ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku wide-band observations of SN 1006

105   0   0.0 ( 0 )
 نشر من قبل Aya Bamba
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aya Bamba




اسأل ChatGPT حول البحث

We report on the wide band spectra of SN 1006 as observed by Suzaku. Thermal and nonthermal emission are successfully resolved thanks to the excellent spectral response of Suzakus X-ray CCD XIS. The nonthermal emission cannot be reproduced by a simple power-law model but needs a roll-off at 5.7$times 10^{16}$ Hz = 0.23 keV. The roll-off frequency is significantly higher in the northeastern rim than in the southwestern rim. We also have placed the most stringent upper limit of the flux above 10 keV using the Hard X-ray Detector.



قيم البحث

اقرأ أيضاً

We report on observations of SN 1006 with the X-ray Imaging Spectrometers (XIS) on board Suzaku. We firmly detected K-shell emission from Fe, for the first time, and find that the Fe ionization state is quite low. The broad band spectrum extracted fr om the southeast of the remnant is well fitted with a model consisting of three optically thin thermal non-equilibrium ionization plasmas and a power-law component. Two of the thermal models are highly overabundant in heavy elements and, hence, are likely due to ejecta. These components have different ionization parameters: $n_et sim 1.4times 10^{10}$ cm$^{-3}$ s and $n_et sim 7.7times 10^8$ cm$^{-3}$ s and it is the later one that produces the Fe-K emission. This suggests that Fe has been heated by the reverse shock more recently than the other elements, consistent with a picture where the ejecta are stratified by composition with Fe in the interior. On the other hand, the third thermal component is assumed to be solar abundance, and we associate it with emission from the interstellar medium (ISM). The electron temperature and ionization parameter are $kT_e sim $0.5 keV and $n_et sim 5.8times 10^9$ cm$^{-3}$ s. The electron temperature is lower than that expected from the shock velocity which suggests a lack of collisionless electron heating at the forward shock. The extremely low ionization parameter and extreme non-equilibrium state are due to the low density of the ambient medium.
The remnant of the supernova of 1006 AD, the remnant first showing evidence for the presence of X-ray synchrotron emission from shock-accelerated electrons, was observed for ~1000 ksec with INTEGRAL for the study of electron acceleration to very high energies. The aim of the observation was to characterize the synchrotron emission, and attempt to detect non-thermal bremsstrahlung, using the combination of IBIS and JEM-X spatial and spectral coverage. The source was detected with JEM-X between 2.4 and 8.4 keV bands, and not detected with either ISGRI or SPI above 20 keV. The ISGRI upper limit is about a factor of four above current model predictions, but confirms the presence of steepening in the power-law extrapolated from lower energies (< 4 keV).
We present the results from deep X-ray observations (~400 ks in total) of SN 1006 by the X-ray astronomy satellite Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and Fe. The observed abundance pattern in the ejecta components is in good agreement with that predicted by a standard model of Type Ia supernovae (SNe). The spatially resolved analysis reveals that the distribution of the O-burning and incomplete Si-burning products (Si, S, and Ar) is asymmetric, while that of the C-burning products (O, Ne, and Mg) is relatively uniform in the SNR interior. The peak position of the former is clearly shifted by 5 (~3.2 pc at a distance of 2.2 kpc) to the southeast from the SNRs geometric center. Using the SNR age of ~1000 yr, we constrain the velocity asymmetry (in projection) of ejecta to be ~3100 km/s. The abundance of Fe is also significantly higher in the southeast region than in the northwest region. Given that the non-uniformity is observed only among the heavier elements (Si through Fe), we argue that SN 1006 originates from an asymmetric explosion, as is expected from recent multi-dimensional simulations of Type Ia SNe, although we cannot eliminate the possibility that an inhomogeneous ambient medium induced the apparent non-uniformity. Possible evidence for the Cr K-shell line and line broadening in the Fe K-shell emission is also found.
We have been searching for surviving companions of progenitors of Galactic Type-Ia supernovae, in particular SN 1572 and SN 1006. These companion stars are expected to show peculiarities: (i) to be probably more luminous than the Sun, (ii) to have hi gh radial velocity and proper motion, (iii) to be possibly enriched in metals from the SNIa ejecta, and (iv) to be located at the distance of the SNIa remnant. We have been characterizing possible candidate stars using high-resolution spectroscopic data taken at 10m-Keck and 8.2m-VLT facilities. We have identified a very promising candidate companion (Tycho G) for SN 1572, but we have not found any candidate companion for SN 1006, suggesting that SN event occurred in 1006 could have been the result of the merging of two white dwarfs. Adding these results to the evidence from the other direct searches, the clear minority of cases (20% or less) seem to disfavour the single-degenerate channel or that preferentially the single-degenerate escenario would involve main-sequence companions less massive than the Sun. Therefore, it appears to be very important to continue investigating these and other Galactic Type-Ia SNe such as the Johannes Kepler SN 1604.
Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with r egards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emission profile of the remnant with the response matrix. Results: The line broadening was measured to be {sigma}_e = 2.4 pm 0.3 eV, corresponding to an oxygen temperature of 275$^{+72}_{-63}$ keV. From the EPIC spectra we obtain an electron temperature of 1.35 pm 0.10 keV. The difference in temperature between the species provides further evidence of non-equilibration of temperatures in a shock. In addition, we find evidence for a bow shock that emits X-ray synchrotron radiation, which is at odds with the general idea that due to the magnetic field orientation only in the NE and SW region X-ray synchrotron radiation should be emitted. We find an unusual H{alpha} and X-ray synchrotron geometry, in that the H{alpha} emission peaks downstream of the synchrotron emission. This may be an indication for a peculiar H{alpha} shock, in which the density is lower and neutral fraction are higher than in other supernova remnants, resulting in a peak in H{alpha} emission further downstream of the shock.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا