ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic Distinguishability Between Quantum States Defining Different Phases of Matter: Fidelity and the Uhlmann Geometric Phase

122   0   0.0 ( 0 )
 نشر من قبل Nikola Paunkovic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the fidelity approach to quantum phase transitions (QPTs) and apply it to general thermal phase transitions (PTs). We analyze two particular cases: the Stoner-Hubbard itinerant electron model of magnetism and the BCS theory of superconductivity. In both cases we show that the sudden drop of the mixed state fidelity marks the line of the phase transition. We conduct a detailed analysis of the general case of systems given by mutually commuting Hamiltonians, where the non-analyticity of the fidelity is directly related to the non-analyticity of the relevant response functions (susceptibility and heat capacity), for the case of symmetry-breaking transitions. Further, on the case of BCS theory of superconductivity, given by mutually non-commuting Hamiltonians, we analyze the structure of the systems eigenvectors in the vicinity of the line of the phase transition showing that their sudden change is quantified by the emergence of a generically non-trivial Uhlmann mixed state geometric phase.



قيم البحث

اقرأ أيضاً

Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase. However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a m easurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information about the system become accessible, enabling the experimental determination of a complete phase diagram including environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number of bands.
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c hannel (generalized measurement), and play a central role in quantum communication. In this paper, we propose measures of distance and fidelity between two quantum ensembles. We consider two approaches: the first one is based on the ability to mimic one ensemble given the other one as a resource and is closely related to the Monge-Kantorovich optimal transportation problem, while the second one uses the idea of extended-Hilbert-space (EHS) representations which introduce auxiliary pointer (or flag) states. Both types of measures enjoy a number of desirable properties. The Kantorovich measures, albeit monotonic under deterministic quantum operations, are not monotonic under generalized measurements. In contrast, the EHS measures are. We present operational interpretations for both types of measures. We also show that the EHS fidelity between ensembles provides a novel interpretation of the fidelity between mixed states--the latter is equal to the maximum of the fidelity between all pure-state ensembles whose averages are equal to the mixed states being compared. We finally use the new measures to define distance and fidelity for stochastic quantum channels and positive operator-valued measures (POVMs). These quantities may be useful in the context of tomography of stochastic quantum channels and quantum detectors.
After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.
Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected t opological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.
The relationship between quantum phase transition and complex geometric phase for open quantum system governed by the non-Hermitian effective Hamiltonian with the accidental crossing of the eigenvalues is established. In particular, the geometric pha se associated with the ground state of the one-dimensional dissipative Ising model in a transverse magnetic field is evaluated, and it is demonstrated that related quantum phase transition is of the first order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا