ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the Disk Regulation Paradigm with Spitzer Observations. II. A Clear Signature of Star-Disk Interaction in NGC 2264 and the Orion Nebula Cluster

366   0   0.0 ( 0 )
 نشر من قبل Nairn Baliber
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of PMS star rotation periods reveal slow rotators in young clusters of various ages, indicating that angular momentum is somehow removed from these rotating masses. The mechanism by which spin-up is regulated as young stars contract has been one of the longest-standing problems in star formation. Attempts to observationally confirm the prevailing theory that magnetic interaction between the star and its circumstellar disk regulates these rotation periods have produced mixed results. In this paper, we use the unprecedented disk identification capability of the Spitzer Space Telescope to test the star-disk interaction paradigm in two young clusters, NGC 2264 and the Orion Nebula Cluster (ONC). We show that once mass effects and sensitivity biases are removed, a clear increase in the disk fraction with period can be observed in both clusters across the entire period range populated by cluster members. We also show that the long-period peak (P $sim$8 days) of the bimodal distribution observed for high-mass stars in the ONC is dominated by a population of stars possessing a disk, while the short-period peak (P $sim$2 days) is dominated by a population of stars without a disk. Our results represent the strongest evidence to date that star-disk interaction regulates the angular momentum of these young stars. This study will make possible quantitative comparisons between the observed period distributions of stars with and without a disk and numerical models of the angular momentum evolution of young stars.



قيم البحث

اقرأ أيضاً

The low spin rates measured for solar-type stars at an age of a few Myr (~10% of the break-up velocity) indicate that some mechanism of angular momentum regulation must be at play in the early pre-main sequence. We characterize the rotation propertie s for members of the region NGC 2264 (~3 Myr), and investigate the accretion-rotation connection at an age where about 50% of the stars have already lost their disks. We examined a sample of 500 cluster members whose photometric variations were monitored in the optical for 38 consecutive days with CoRoT. Light curves were analyzed for periodicity using the Lomb-Scargle periodogram, the autocorrelation function and the string-length method. The period distribution obtained for the cluster consists of a smooth distribution centered around P=5.2 d with two peaks at P=1-2 d and 3-4 d. A separate analysis of CTTS and WTTS indicates that the P=1-2 d peak is associated with the latter, while both groups contribute to the P=3-4 d peak. The comparison between CTTS and WTTS supports the idea of a rotation-accretion connection: their respective rotational properties are statistically different, and CTTS rotate on average more slowly than WTTS. We also observe a clear dearth of fast rotators with strong accretion signatures (large UV flux excess). This is consistent with earlier findings that fast rotators in young star clusters are typically devoid of dusty disks. Our sample shows some evidence of a mass dependence in the rotation properties of NGC 2264 members, lower-mass stars spinning on average faster. This study confirms that disks influence the rotational evolution of young stars. The idea of disk-locking may be consistent with the picture of rotation and rotation-accretion connection that we observe for the NGC 2264 cluster. However, the origin of the several substructures that we observe in the period distribution deserves further investigation.
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star forming region S MON are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 -- -0.5, and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.
We present ALMA 850 $mu$m continuum observations of the Orion Nebula Cluster that provide the highest angular resolution ($sim 0rlap{.}1 approx 40$ AU) and deepest sensitivity ($sim 0.1$ mJy) of the region to date. We mosaicked a field containing $si m 225$ optical or near-IR-identified young stars, $sim 60$ of which are also optically-identified proplyds. We detect continuum emission at 850 $mu$m towards $sim 80$% of the proplyd sample, and $sim 50$% of the larger sample of previously-identified cluster members. Detected objects have fluxes of $sim 0.5$-80 mJy. We remove sub-mm flux due to free-free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, sub-mm fluxes correspond to dust masses of $sim 0.5$ to 80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of sub-mm flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star $theta^1$ Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
145 - Jesus Hernandez 2007
We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociati on, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with evolved disks; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.
We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا