ﻻ يوجد ملخص باللغة العربية
An important ``observable of planar N=4 SYM theory is the scaling function f(lambda) that appears in the anomalous dimension of large spin twist 2 operators and also in the cusp anomaly of light-like Wilson loops. The non-trivial relation between the anomalous dimension and the Wilson interpretations of f(lambda) is well-understood on the perturbative gauge theory side of the AdS/CFT duality. In the first part of this paper we present the dual string-theory counterpart of this relation, to all orders in lambda^(-1/2) expansion. As a check, we explicitly compute the leading 1-loop string sigma model correction to the cusp Wilson loop, reproducing the same subleading coefficient in f(lambda) as found earlier in the spinning closed string case. The same function f(lambda) appears also in the resummed form of the 4-gluon amplitude as discussed at weak coupling by Bern, Dixon and Smirnov and recently found at the leading order at strong coupling by Alday and Maldacena (AM). Here we attempt to extend this approach to subleading order in lambda^(-1/2) by computing the IR singular part of 1-loop string correction to the corresponding T-dual Wilson loop. We discuss explicitly the 1-cusp case and comment on apparent problems with the dimensional regularization proposal of AM when directly applied order by order in strong coupling (inverse string tension) expansion.
We consider the world surface in AdS_5 that ends on two intersecting null lines at the boundary. The corresponding string partition function describes the expectation value of the Wilson line with a null cusp in dual large N maximally supersymmetric
Using information from the marginality conditions of vertex operators for the AdS_5 x S^5 superstring, we determine the structure of the dependence of the energy of quantum string states on their conserved charges and the string tension proportional
We find the Hamiltonian for physical excitations of the classical bosonic string propagating in the AdS_5 x S^5 space-time. The Hamiltonian is obtained in a so-called uniform gauge which is related to the static gauge by a 2d duality transformation.
We consider classical superstrings propagating on AdS_5 x S^5 space-time. We consistently truncate the superstring equations of motion to the so-called su(1|1) sector. By fixing the uniform gauge we show that physical excitations in this sector are d
We study a general class of spinning pulsating strings in $(AdS_5 times S^5)_{varkappa}$ background. For these family of solitons, we examine the scaling relation between the energy, spin or angular momentum. We verify that in $varkappa rightarrow 0