ﻻ يوجد ملخص باللغة العربية
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial systems state. The evolution induced by measurement (known as state collapse) can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by measuring non-destructively the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.
The relaxation of a quantum field stored in a high-$Q$ superconducting cavity is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon counting, undergoes jumps between photon number states. W
Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit and are heavily demanded in the emerging quantum technologies such as communication, sensing, and computing. Of particular interest is a quantum non-demolit
Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reve
Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous tr
We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measu