ترغب بنشر مسار تعليمي؟ اضغط هنا

12 and 18 micron images of dust surrounding HD 32297

137   0   0.0 ( 0 )
 نشر من قبل Margaret Moerchen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first subarcsecond-resolution images at multiple mid-IR wavelengths of the thermally-emitting dust around the A0 star HD 32297. Our observations with T-ReCS at Gemini South reveal a nearly edge-on resolved disk at both 11.7 microns and 18.3 microns that extends ~150 AU in radius. The mid-IR is the third wavelength region in which this disk has been resolved, following coronagraphic observations by others of the source at optical and near-IR wavelengths. The global mid-IR colors and detailed consideration of the radial color-temperature distribution imply that the central part of the disk out to ~80 AU is relatively deficient in dust.



قيم البحث

اقرأ أيضاً

We present ACS/HST coronagraphic observations of HD 100546, a B9.5 star, 103 pc away from the sun, taken in the F435W, F606W, and F814W bands. Scattered light is detected up to 14 from the star. The observations are consistent with the presence of an extended flattened nebula with the same inclination as the inner disk. The well-known ``spiral arms are clearly observed and they trail the rotating disk material. Weaker arms never before reported are also seen. The inter-arm space becomes brighter, but the structures become more neutral in color at longer wavelengths, which is not consistent with models that assume that they are due to the effects of a warped disk. Along the major disk axis, the colors of the scattered-light relative to the star are Delta (F435W-F606W) ~ 0.0--0.2 mags and Delta (F435W-F814W)~0.5--1 mags. To explain these colors, we explore the role of asymmetric scattering, reddening, and large minimum sizes on ISM-like grains. We conclude each of these hypotheses by itself cannot explain the colors. The disk colors are similar to those derived for Kuiper Belt objects, suggesting that the same processes responsible for their colors may be at work here. We argue that we are observing only the geometrically thick, optically thin envelope of the disk, while the optically thick disk responsible for the far-IR emission is undetected. The observed spiral arms are then structures on this envelope. The colors indicate that the extended nebulosity is not a remnant of the infalling envelope but reprocessed disk material.
Spectro-photometry of debris disks in total intensity and polarimetry can provide new insight into the properties of the dust grains therein (size distribution and optical properties). We aim to constrain the morphology of the highly inclined debri s disk HD 32297. We also intend to obtain spectroscopic and polarimetric measurements to retrieve information on the particle size distribution within the disk for certain grain compositions. We observed HD 32297 with SPHERE in Y, J, and H bands in total intensity and in J band in polarimetry. The observations are compared to synthetic models of debris disks and we developed methods to extract the photometry in total intensity overcoming the data-reduction artifacts, namely the self-subtraction. The spectro-photometric measurements averaged along the disk mid-plane are then compared to model spectra of various grain compositions. These new images reveal the very inner part of the system as close as 0.15. The disk image is mostly dominated by the forward scattering making one side (half-ellipse) of the disk more visible, but observations in total intensity are deep enough to also detect the back side for the very first time. The images as well as the surface brightness profiles of the disk rule out the presence of a gap as previously proposed. We do not detect any significant asymmetry between the northeast and southwest sides of the disk. The spectral reflectance features a gray to blue color which is interpreted as the presence of grains far below the blowout size. The presence of sub-micron grains in the disk is suspected to be the result of gas drag and/or avalanche mechanisms. The blue color of the disk could be further investigated with additional total intensity and polarimetric observations in K and H bands respectively to confirm the spectral slope and the fraction of polarization.
348 - P.F.L. Maxted 2012
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phas e effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.
We present ALMA 1.3 mm (230 GHz) observations of the HD 32297 and HD 61005 debris disks, two of the most iconic debris disks due to their dramatic swept-back wings seen in scattered light images. These observations achieve sensitivities of 14 and 13 $mu$Jy beam$^{-1}$ for HD 32297 and HD 61005, respectively, and provide the highest resolution images of these two systems at millimeter wavelengths to date. By adopting a MCMC modeling approach, we determine that both disks are best described by a two-component model consisting of a broad ($Delta R/R> 0.4$) planetesimal belt with a rising surface density gradient, and a steeply falling outer halo aligned with the scattered light disk. The inner and outer edges of the planetesimal belt are located at $78.5pm8.1$ AU and $122pm3$ AU for HD 32297, and $41.9pm0.9$ AU and $67.0pm0.5$ AU for HD 61005. The halos extend to $440pm32$ AU and $188pm8$ AU, respectively. We also detect $^{12}$CO J$=2-1$ gas emission from HD 32297 co-located with the dust continuum. These new ALMA images provide observational evidence that larger, millimeter-sized grains may also populate the extended halos of these two disks previously thought to only be composed of small, micron-sized grains. We discuss the implications of these results for potential shaping and sculpting mechanisms of asymmetric debris disks.
We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD 32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, w e detect the nearly edge-on disk at >5sigma levels from ~0.45 arcsec to ~1.7 arcsec (50-192 AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of ~0.75 arcsec (NE side) and ~0.65 arcsec (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110 AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95 AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from ~0.25-1.6 arcsec, although the central region is quite noisy and high S/N are only found in the range ~0.75-1.2 arcsec. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from ~10% at 0.55 arcsec to ~25% at 1.6 arcsec. The maximum is found at scattering angles of ~90degrees, either from the main components of the disk or from dust grains blown out to larger radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا