ترغب بنشر مسار تعليمي؟ اضغط هنا

On the distillation and purification of phase-diffused squeezed states

167   0   0.0 ( 0 )
 نشر من قبل Boris Hage
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently it was discovered that non-Gaussian decoherence processes, such as phase-diffusion, can be counteracted by purification and distillation protocols that are solely built on Gaussian operations. Here, we make use of this experimentally highly accessible regime, and provide a detailed experimental and theoretical analysis of several strategies for purification/distillation protocols on phase-diffused squeezed states. Our results provide valuable information for the optimization of such protocols with respect to the choice of the trigger quadrature, the trigger threshold value and the probability of generating a distilled state.



قيم البحث

اقرأ أيضاً

We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.
We show that a nonlinear asymmetric directional coupler composed of a linear waveguide and a nonlinear waveguide operating by nondegenerate parametric amplification is an effective source of single-mode squeezed light. This is has been demonstrated, under certain conditions and for specific modes, for incident coherent beams in terms of the quasiprobability functions, photon-number distribution and phase distribution.
The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementati on of quantum technologies. Here we show that it is impossible to transfer part of such mixedness to a trash system without losing some of the initial information. Such loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this interesting phenomenon and its consequences for general quantum information theory, linking it to the information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of general quantum correlations.
Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrodinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wavepackets, e ven in the ideal case of no optical losses. Here we theoretically discuss this impurity, by introducing mode-match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.
We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Ker r effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا