ترغب بنشر مسار تعليمي؟ اضغط هنا

The Space Infrared Interferometric Telescope (SPIRIT): High-resolution imaging and spectroscopy in the far-infrared

456   0   0.0 ( 0 )
 نشر من قبل David Leisawitz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Leisawitz




اسأل ChatGPT حول البحث

We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their inhomogeneous composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.



قيم البحث

اقرأ أيضاً

94 - Tea Temim 2006
We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared grou nd-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.
Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured. An important part of transit-search programmes is the removal of false-positives. The critical question is how many of the candidates that passed all previous tests are false positives. For our study we selected 25 CoRoT candidates that have already been screened against false-positives using detailed analysis of the light curves and seeing-limited imaging, which has transits that are between 0.7 and 0.05% deep. We observed 20 candidates with the adaptive optics imager NaCo and 18 with the high-resolution infrared spectrograph CRIRES. We found previously unknown stars within 2 arcsec of the targets in seven of the candidates. All of these are too faint and too close to the targets to have been previously detected with seeing-limited telescopes in the optical. Our study thus leads to the surprising results that if we remove all candidates excluded by the sophisticated analysis of the light-curve, as well as carrying out deep imaging with seeing-limited telescopes, still 28-35% of the remaining candidates are found to possess companions that are bright enough to be false-positives. Given that the companion-candidates cluster around the targets and that the J-K colours are consistent with physical companions, we conclude that the companion-candidates are more likely to be physical companions rather than unrelated field stars.
Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observ ed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated in the first years of its life to carrying out a few (well focused in terms of science objectives and time) legacy surveys. WHITE would have an angular resolution of ~0.3 h omogeneous over ~0.7 sq. deg. in the wavelength range 1 - 5 um, which means that we will very efficiently use all the available observational time during night time and day time. Moreover, the deepest observations will be performed by summing up shorter individual frames. We will have a temporal information that can be used to study variable objects. The three key science objectives of WHITE are : 1) A complete survey of the Magellanic Clouds to make a complete census of young stellar objects in the clouds and in the bridge and to study their star formation history and the link with the Milky Way. The interaction of the two clouds with our Galaxy might the closest example of a minor merging event that could be the main driver of galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the equation of state from these obscured objects, study the formation of dust in galaxies and build the first high resolution sample of high redshift galaxies observed in their optical frame 3) A very wide weak lensing survey over that would allow to estimate the equation of state in a way that would favourably compete with space projects.
284 - David A. Naylor 2013
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach-Zehnder interferometer design has been widely adopted for current and future imaging FTS instruments; we comp are this design with two other common interferometer formats. Examples of three instruments based on the Mach-Zehnder design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا