ترغب بنشر مسار تعليمي؟ اضغط هنا

The FIRST-2MASS Red Quasar Survey

128   0   0.0 ( 0 )
 نشر من قبل Eilat Glikman
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eilat Glikman




اسأل ChatGPT حول البحث

Combining radio observations with optical and infrared color selection -- demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars -- we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that >~ 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K <= 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of >20-30%.



قيم البحث

اقرأ أيضاً

We present results on a survey to find extremely dust-reddened Type-1 Quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more tha n 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 magnitudes. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of Broad Absorption Line (BAL) quasars at high redshift, all but one of them belonging to the Low Ionization BAL (LoBAL) class and many also showing absorption the metastable FeII line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy.
We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broa d wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a normal blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.
151 - C. Leipski 2007
In the course of the NIR/MIR AGN search combining the 6.7 mu ISOCAM Parallel Survey and 2MASS we have discovered 24 type-1 quasars about a third of which are too red to be discriminated by optical/UV search techniques. Here we report on a detailed ca se study of the reddest type-1 quasar of our sample (J2341) at redshift z=0.236 with M_K=-25.8 and J-K=1.95. We performed spectroscopy in the optical with VLT/FORS1 and in the MIR with Spitzer as well as NIR imaging with ISPI at CTIO. The optical and NIR observations reveal a star forming emission-line galaxy at the same redshift as the quasar with a projected linear separation of 1.8 arcsec (6.7 kpc). The quasar and its companion are embedded in diffuse extended continuum emission. Compared with its companion the quasar exhibits redder optical-NIR colours, which we attribute to hot nuclear dust. The MIR spectrum shows only few emission lines superimposed on a power-law spectral energy distribution. However, the lack of strong FIR emission suggests that our potentially interacting object contains much less gas and dust and is in a stage different from dust reddened ULIRG-AGN like Mrk 231. The optical spectrum shows signatures for reddening in the emission-lines and no post-starburst stellar population is detected in the host galaxy of the quasar. The optical continuum emission of the active nucleus appears absorbed and diluted. Even the combination of absorption and host dilution is not able to match J2341 with standard quasar templates. While the BLR shows only a rather moderate absorption of E_(B-V)=0.3, the continuum shorter than 4500 AA requires strong obscuration with E_(B-V)=0.7, exceeding the constraints from the low upper limit on the 9.7 mu silicate absorption. This leads us to conclude that the continuum of J2341 is intrinsically redder than that of typical quasars.
Some reddened quasars appear to be transitional objects in the merger-induced black hole growth/galaxy evolution paradigm, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and g as. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830+3759 is moderately obscured ($N_{rm H,Z} = 2.1pm0.2 times10^{22}$ cm$^{-2}$) and F2M 1227+3214 is mildly absorbed ($N_{rm H,Z} = 3.4^{+0.8}_{-0.7}times10^{21}$ cm$^{-2}$) along the line-of-sight, heavier global obscuration may be present in both sources, with $N_{rm H,S} = 3.7^{+4.1}_{-2.6} times 10^{23}$ cm$^{-2}$ and $< 5.5times10^{23}$ cm$^{-2}$, for F2M 0830+3759 and F2M 1227+3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 keV which is well accommodated by a model where 7% of the intrinsic AGN X-ray emission is scattered into the line-of-sight. While F2M 1227+3214 has a dust-to-gas ratio ($E(B-V)$/$N_{rm H}$) consistent with the Galactic value, the $E(B-V)$/$N_{rm H}$ value for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust-sublimation zone of the broad-line-region. The X-ray and 6.1$mu$m luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGN previously observed by NuSTAR to higher luminosities.
Using simple infrared color selection, 2MASS has found a large number of red, previously unidentified, radio-quiet QSOs. Although missed by UV/optical surveys, the 2MASS QSOs have K-band luminosities that are comparable to classical QSOs. This sugges ts the possible discovery of a previously predicted large population of dust-obscured radio-quiet QSOs. We present the results of an imaging survey of 29 2MASS QSOs observed with WFPC2 onboard the Hubble Space Telescope. I-band images, which benefit from the relative faintness of the nuclei at optical wavelengths, are used to characterize the host galaxies, measure the nuclear contribution to the total observed I-band emission, and to survey the surrounding environments. The 2MASS QSOs are found to lie in galaxies with a variety of morphologies, luminosities, and dynamical states, not unlike those hosting radio-quiet PG QSOs. Our analysis suggests that the extraordinary red colors of the 2MASS QSOs are caused by extinction of an otherwise typical QSO spectrum due to dust near the nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا