ﻻ يوجد ملخص باللغة العربية
We study the arrival time distribution of overdamped particles driven by a constant force in a piecewise linear random potential which generates the dichotomous random force. Our approach is based on the path integral representation of the probability density of the arrival time. We explicitly calculate the path integral for a special case of dichotomous disorder and use the corresponding characteristic function to derive prominent properties of the arrival time probability density. Specifically, we establish the scaling properties of the central moments, analyze the behavior of the probability density for short, long, and intermediate distances. In order to quantify the deviation of the arrival time distribution from a Gaussian shape, we evaluate the skewness and the kurtosis.
We perform a time-dependent study of the driven dynamics of overdamped particles which are placed in a one-dimensional, piecewise linear random potential. This set-up of spatially quenched disorder then exerts a dichotomous varying random force on th
We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuo
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We
We study the effect of quenched randomness in the arc-length dependent spontaneous curvature of a wormlike chain under tension. In the weakly bending approximation in two dimensions, we obtain analytic results for the force-elongation curve and the w
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other