ﻻ يوجد ملخص باللغة العربية
We study the process of dynamical capture of a millisecond pulsar (MSP) by a single or binary IMBH, simulating various types of single-binary and binary-binary encounters. It is found that [IMBH,MSP] binaries form over cosmic time in a cluster, via encounters of wide--orbit binary MSPs off the single IMBH, and at a lower pace, via interactions of (binary or single) MSPs with the IMBH orbited by a typical cluster star. The formation of an [IMBH,MSP] system is strongly inhibited if the IMBH is orbited by a stellar mass black hole. The [IMBH,MSP] binaries that form are relatively short-lived, $lsim 10^{8-9}$ yr, since their orbits decay via emission of gravitational waves. The detection of an [IMBH,MSP] system has a low probability of occurrence, when inferred from the current sample of MSPs in GCs. If next generation radio telescopes, like SKA, will detect an order of magnitude larger population of MSP in GCs, at least one [IMBH,MSP] is expected. Therefore, a complete search for low-luminosity MSPs in the GCs of the Milky Way with SKA will have the potential of testing the hypothesis that IMBHs of order $100 msun$ are commonly hosted in GCs.
Over a hundred millisecond radio pulsars (MSPs) have been observed in globular clusters (GCs), motivating theoretical studies of the formation and evolution of these sources through stellar evolution coupled to stellar dynamics. Here we study MSPs in
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de
Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info
The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of g