ﻻ يوجد ملخص باللغة العربية
Observations were made of the optical afterglow of GRB 051028 with the Lulin observatorys 1.0 m telescope and the WIDGET robotic telescope system. R band photometric data points were obtained on 2005 October 28 (UT), or 0.095-0.180 days after the burst. There is a possible plateau in the optical light curve around 0.1 days after the burst; the light curve resembles optically bright afterglows (e.g. GRB 041006, GRB 050319, GRB060605) in shape of the light curve but not in brightness. The brightness of the GRB 051028 afterglow is 3 magnitudes fainter than that of one of the dark events, GRB 020124. Optically dark GRBs have been attributed to dust extinction within the host galaxy or high redshift. However, the spectrum analysis of the X-rays implies that there is no significant absorption by the host galaxy. Furthermore, according to the model theoretical calculation of the Ly$alpha$ absorption to find the limit of GRB 051028s redshift, the expected $R$ band absorption is not high enough to explain the darkness of the afterglow. While the present results disfavor either the high-redshift hypothesis or the high extinction scenario for optically dark bursts, they are consistent with the possibility that the brightness of the optical afterglow, intrinsically dark.
We present multiwavelength observations of the gamma-ray burst GRB 051028 detected by HETE-2 in order to derive its afterglow emission parameters and to determine the reason for its optical faintness when compared to other events. Observations were t
GRB 051022 was detected at 13:07:58 on 22 October 2005 by HETE-2. The location of GRB 051022 was determined immediately by the flight localization system. This burst contains multiple pulses and has a rather long duration of about 190 seconds. The de
We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates hav
The low-temperature resistance of a conducting LaAlO3/SrTiO3 interface with a 10 nm thick LaAlO3 film decreases by more than 50% after illumination with light of energy higher than the SrTiO3 band-gap. We explain our observations by optical excitatio
We identify the fading X-ray afterglow of GRB 001025A from XMM-Newton observations obtained 1.9-2.3 days, 2 years, and 2.5 years after the burst. The non-detection of an optical counterpart to an upper limit of R=25.5, 1.20 days after the burst, make