ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-empirical pressure-volume-temperature equation of state; MgSiO3 perovskite is an example

351   0   0.0 ( 0 )
 نشر من قبل Jozsef Garai
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jozsef Garai




اسأل ChatGPT حول البحث

Simple general formula describing the p-V-T relationships of elastic solids is derived from theoretical considerations. The new EoS was tested to experiments of perovskite 0-109 GPa and 293-2000 K. The parameters providing the best fit are: Ko = 267.5 GPa, Vo = 24.284 cm3, alpha_o = 2.079x10^-5 K^-1, the pressure derivative of Ko is 1.556 and the pressure derivative of alpha_o is -1.098x10^-7 K^-1GPa^-1 . The root-mean-square-deviations (RMSD) of the residuals are 0.043 cm3, 0.79 GPa, and 125 K for the molar volume, pressure, and temperature respectively. These RMSD values are in the range of the uncertainty of the experiments, indicating that the five parameters semi-empirical EoS correctly describes the p-V-T relationships of perovskite. Separating the experiments into 200 K ranges the semi-empirical EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Birch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSDs of the residuals and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters under pure isothermal conditions the semi-empirical p-V EoS is slightly weaker than the Birch-Murnaghan and Vinet EoSs; however, the semi-empirical p-V-T EoS is superior in every temperature range to all of the investigated conventional isothermal EoSs.

قيم البحث

اقرأ أيضاً

43 - Jozsef Garai 2009
Self-resonance in the atomic vibration occurs when the average wavelength of the phonon thermal vibration is equivalent or harmonic of the diameters of the atoms. It is suggested that applying pressure at temperature corresponding to the self-resonan ce should effectively reduce the number of vacancies. This theoretical prediction is tested on Niobium by measuring the magnetic susceptibility of the untreated and treated samples. The applied pressure-temperature treatment increased the critical temperature of Niobium by about 30 percent which was also accompanied with volume increase.
Room temperature angle-dispersive x-ray diffraction measurements on spinel ZnGa2O4 up to 56 GPa show evidence of two structural phase transformations. At 31.2 GPa, ZnGa2O4 undergoes a transition from the cubic spinel structure to a tetragonal spinel structure similar to that of ZnMn2O4. At 55 GPa, a second transition to the orthorhombic marokite structure (CaMn2O4-type) takes place. The equation of state of cubic spinel ZnGa2O4 is determined: V0 = 580.1(9) A3, B0 = 233(8) GPa, B0= 8.3(4), and B0= -0.1145 GPa-1 (implied value); showing that ZnGa2O4 is one of the less compressible spinels studied to date. For the tetragonal structure an equation of state is also determined: V0 = 257.8(9) A3, B0 = 257(11) GPa, B0= 7.5(6), and B0= -0.0764 GPa-1 (implied value). The reported structural sequence coincides with that found in NiMn2O4 and MgMn2O4.
We propose a non-steady state model of the global temperature change. The model describes Earths surface temperature dynamics under main climate forcing. The equations were derived from basic physical relationships and detailed assessment of the nume ric parameters used in the model. It shows an accurate fit with observed changes in the surface mean annual temperature (MAT) for the past 116 years. Using our model, we analyze the future global temperature change under scenarios of drastic reductions of COtextsubscript{2}. The presence of non-linear feed-backs in the model indicates on the possibility of exceeding two degrees threshold even under the carbon dioxide drastic reduction scenario. We discuss the risks associated with such warming and evaluate possible benefits of developing COtextsubscript{2}-absorbing deciduous tree plantations in the boreal zone of Northern Hemisphere.
In the contemporary Cosmology, dark energy is modeled as a perfect fluid, having a very simple equation of state: pressure is proportional to dark energy density. As an alternative, I propose a more complex equation of state, with pressure being func tion of three variables: dark energy density, matter density and the size of the Universe. One consequence of the new equation is that, in the late-time Universe, cosmological scale factor is linear function of time; while the standard cosmology predicts an exponential function.The new equation of state allows attributing a temperature to the physical vacuum, a temperature proportional to the acceleration of the expansion of the Universe. The vacuum temperature decreases with the expansion of the Universe, approaching (but never reaching) the absolute zero.
148 - Moses Fayngold 2016
A thought experiment is considered on observation of instantaneous collapse of an extended wave packet. According to relativity of simultaneity, such a collapse being instantaneous in some reference frame must be a lasting process in other frames. Bu t according to quantum mechanics, collapse is instantaneous in any frame. Mathematical structure of quantum mechanics eliminates any contradictions between these two apparently conflicting statements. Here the invariance of quantum-mechanical collapse is shown to follow directly from the Born postulate, without any use of mathematical properties of quantum operators. The consistency of quantum mechanics with Relativity is also shown for instant disentanglement of a composite system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا