ﻻ يوجد ملخص باللغة العربية
A quantum Monte Carlo simulation of a system of hard rods in one dimension is presented and discussed. The calculation is exact since the analytical form of the wavefunction is known, and is in excellent agreement with predictions obtained from asymptotic expansions valid at large distances. The analysis of the static structure factor and the pair distribution function indicates that a solid-like and a gas-like phases exist at high and low densities, respectively. The one-body density matrix decays following a power-law at large distances and produces a divergence in the low density momentum distribution at k=0 which can be identified as a quasi-condensate.
The zero-temperature dynamical structure factor $S(q,omega)$ of one-dimensional hard rods is computed using state-of-the-art quantum Monte Carlo and analytic continuation techniques, complemented by a Bethe Ansatz analysis. As the density increases,
A one-dimensional (1D) Bose system with dipole-dipole repulsion is studied at zero temperature by means of a Quantum Monte Carlo method. It is shown that in the limit of small linear density the bosonic system of dipole moments acquires many properti
A variational Monte Carlo calculation of the one-body density matrix and momentum distribution of a system of Fermi hard rods (HR) is presented and compared with the same quantities for its bosonic counterpart. The calculation is exact within statist
The ground-state phase properties of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo techniques. Limitations of mean-field theory in a two-dimensional geometry are discussed. A quantum phase tr
The ground state properties of a single-component one-dimensional Coulomb gas are investigated. We use Bose-Fermi mapping for the ground state wave function which permits to solve the Fermi sign problem in the following respects (i) the nodal surface