ترغب بنشر مسار تعليمي؟ اضغط هنا

The power of quantum systems on a line

66   0   0.0 ( 0 )
 نشر من قبل Daniel Gottesman
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the computational strength of quantum particles (each of finite dimensionality) arranged on a line. First, we prove that it is possible to perform universal adiabatic quantum computation using a one-dimensional quantum system (with 9 states per particle). This might have practical implications for experimentalists interested in constructing an adiabatic quantum computer. Building on the same construction, but with some additional technical effort and 12 states per particle, we show that the problem of approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to the fact that the analogous classical problem, namely, one-dimensional MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the QMA-completeness result requires an additional idea beyond the usual techniques in the area: Not all illegal configurations can be ruled out by local checks, so instead we rule out such illegal configurations because they would, in the future, evolve into a state which can be seen locally to be illegal. Our construction implies (assuming the quantum Church-Turing thesis and that quantum computers cannot efficiently solve QMA-complete problems) that there are one-dimensional systems which take an exponential time to relax to their ground states at any temperature, making them candidates for being one-dimensional spin glasses.


قيم البحث

اقرأ أيضاً

We introduce an analytically treatable spin decoherence model for quantum walk on a line that yields the exact position probability distribution of an unbiased classical random walk at all-time scales. This spin decoherence model depicts a quantum ch annel in which simultaneous bit and phase flip operator is applied at random on the coin state. Based on this result we claim that there exist certain quantum channels that can produce exact classical statistical properties for a given one-dimensional quantum walk. Moreover, from the perspective of quantum computing, decoherence model introduced in this study may have useful algorithmic applications when it is applied on quantum walks with non-local initial states.
203 - Kae Nemoto , W. J. Munro 2005
In this paper we investigate the linear and nonlinear models of optical quantum computation and discuss their scalability and efficiency. We show how there are significantly different scaling properties in single photon computation when weak cross-Ke rr nonlinearities are allowed to supplement the usual linear optical set. In particular we show how quantum non-demolition measurements are an efficient resource for universal quantum computation.
138 - Martin Stefanak , Igor Jex 2016
We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast to the classical random walk there is no connection between the behaviour of persistence and the scaling of variance. In particular, we find that for a two-state quantum walks persistence follows an inverse power-law where the exponent is determined solely by the coin parameter. Moreover, for a one-parameter family of three-state quantum walks containing the Grover walk the scaling of persistence is given by two contributions. The first is the inverse power-law. The second contribution to the asymptotic behaviour of persistence is an exponential decay coming from the trapping nature of the studied family of quantum walks. In contrast to the two-state walks both the exponent of the inverse power-law and the decay constant of the exponential decay depend also on the initial coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the initial condition, ranging from purely exponential decay to purely inverse power-law behaviour.
Controlling the energy of unauthorized light signals in a quantum cryptosystem is an essential criterion for implementation security. Here, we propose a passive optical power limiter device based on thermo-optical defocusing effects providing a relia ble power limiting threshold which can be readily adjusted to suit various quantum applications. In addition, the device is robust against a wide variety of signal variations (e.g. wavelength, pulse width), which is important for implementation security. Moreover, we experimentally show that the proposed device does not compromise quantum communication signals, in that it has only a very minimal impact (if not, negligible impact) on the intensity, phase, or polarization degrees of freedom of the photon, thus making it suitable for general communication purposes. To show its practical utility for quantum cryptography, we demonstrate and discuss three potential applications: (1) measurement-device-independent quantum key distribution with enhanced security against a general class of Trojan-horse attacks, (2) using the power limiter as a countermeasure against bright illumination attacks, and (3) the application of power limiters to potentially enhance the implementation security of plug-and-play quantum key distribution.
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear in tegrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا