ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Entropy Measures for Multipartite Quantum Entanglement

153   0   0.0 ( 0 )
 نشر من قبل Gui Lu Long
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new entanglement measure, the multiple entropy measures (MEMS), is proposed to quantify quantum entanglement of multi-partite quantum state. The MEMS is vector-like with $m=[N/2]$, the integer part of $N/2$, components: $[S_1, S_2,..., S_m]$, and the $i$-th component $S_i$ is the geometric mean of $i$-body partial entropy of the system. The $S_i$ measures how strong an arbitrary $i$ bodies from the system are entangled with the rest of the system. The MEMS is not only transparent in physical picture, but also simple to calculate. It satisfies the conditions for a good entanglement measure. We have analyzed the entanglement properties of the GHZ-state, the W-states and cluster-states under MEMS. The cluster-state is more entangled than the GHZ-state and W-state under MEMS.

قيم البحث

اقرأ أيضاً

We introduce two operational entanglement measures which are applicable for arbitrary multipartite (pure or mixed) states. One of them characterizes the potentiality of a state to generate other states via local operations assisted by classical commu nication (LOCC) and the other the simplicity of generating the state at hand. We show how these measures can be generalized to two classes of entanglement measures. Moreover, we compute the new measures for pure few-partite systems and use them to characterize the entanglement contained in a three-qubit state. We identify the GHZ- and the W-state as the most powerful pure three-qubit states regarding state manipulation.
Multipartite entanglement is an essential resource for quantum communication, quantum computing, quantum sensing, and quantum networks. The utility of a quantum state, $|psirangle$, for these applications is often directly related to the degree or ty pe of entanglement present in $|psirangle$. Therefore, efficiently quantifying and characterizing multipartite entanglement is of paramount importance. In this work, we introduce a family of multipartite entanglement measures, called Concentratable Entanglements. Several well-known entanglement measures are recovered as special cases of our family of measures, and hence we provide a general framework for quantifying multipartite entanglement. We prove that the entire family does not increase, on average, under Local Operations and Classical Communications. We also provide an operational meaning for these measures in terms of probabilistic concentration of entanglement into Bell pairs. Finally, we show that these quantities can be efficiently estimated on a quantum computer by implementing a parallelized SWAP test, opening up a research direction for measuring multipartite entanglement on quantum devices.
New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the states extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for bo
The entanglement resource required for quantum information processing comes in a variety of forms, from Bell states to multipartite GHZ states or cluster states. Purifying these resources after their imperfect generation is an indispensable step towa rds using them in quantum architectures. While this challenge, both in the case of Bell pairs and more general multipartite entangled states, is mostly overcome in the presence of perfect local quantum hardware with unconstrained qubit register sizes, devising optimal purification strategies for finite-size realistic noisy hardware has remained elusive. Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years. We present cases where the hardware limitations are taken into account, and surprisingly find that smaller `sacrificial states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states. This drastically simplifies the requirements and presents a fundamentally new pathway to leverage near term networked quantum hardware.
Multipartite entanglement tomography, namely the quantum Fisher information (QFI) calculated with respect to different collective operators, allows to fully characterize the phase diagram of the quantum Ising chain in a transverse field with variable -range coupling. In particular, it recognizes the phase stemming from long-range antiferromagnetic coupling, a capability also shared by the spin squeezing. Furthermore, the QFI locates the quantum critical points, both with vanishing and nonvanishing mass gap. In this case, we also relate the finite-size power-law exponent of the QFI to the critical exponents of the model, finding a signal for the breakdown of conformal invariance in the deep long-range regime. Finally, the effect of a finite temperature on the multipartite entanglement, and ultimately on the phase stability, is considered. In light of the current realizations of the model with trapped ions and of the potential measurability of the QFI, our approach yields a promising strategy to probe long-range physics in controllable quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا