ترغب بنشر مسار تعليمي؟ اضغط هنا

High Metallicity of the X-Ray Gas up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift

48   0   0.0 ( 0 )
 نشر من قبل Yutaka Fujita
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of a Suzaku observation of the link region between the galaxy clusters A399 and A401. We obtained the metallicity of the intracluster medium (ICM) up to the cluster virial radii for the first time. We determine the metallicity where the virial radii of the two clusters cross each other (~2 Mpc away from their centers) and found that it is comparable to that in their inner regions (~0.2 Zsun). It is unlikely that the uniformity of metallicity up to the virial radii is due to mixing caused by a cluster collision. Since the ram-pressure is too small to strip the interstellar medium of galaxies around the virial radius of a cluster, the fairly high metallicity that we found there indicates that the metals in the ICM are not transported from member galaxies by ram-pressure stripping. Instead, the uniformity suggests that the proto-cluster region was extensively polluted with metals by extremely powerful outflows (superwinds) from galaxies before the clusters formed. We also searched for the oxygen emission from the warm--hot intergalactic medium in that region and obtained a strict upper limit of the hydrogen density (nH<4.1x10^-5 cm^-3).

قيم البحث

اقرأ أيضاً

We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzakus low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal c overage. We find significant anisotropies in the temperature and entropy profiles, with a region of lower temperature and entropy occurring to the south east, possibly the result of accretion activity in this direction. Away from this cold feature, the thermodynamic properties are consistent with an entropy profile which rises, but less steeply than the predictions of purely gravitational hierarchical structure formation. Excess emission in the northern direction can be explained due to the overlap of the emission from the outskirts of Abell 2029 and nearby Abell 2033 (which is at slightly higher redshift). These observations suggest that the assumptions of spherical symmetry and hydrostatic equilibrium break down in the outskirts of galaxy clusters, which poses challenges for modelling cluster masses at large radii and presents opportunities for studying the formation and accretion history of clusters.
We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprisi ng result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter haloes, which predict a more protracted mass build up over a Hubble time. We discuss however that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
We report the first Chandra detection of emission out to the virial radius in the cluster Abell 1835 at z=0.253. Our analysis of the soft X-ray surface brightness shows that emission is present out to a radial distance of 10 arcmin or 2.4 Mpc, and th e temperature profile has a factor of ten drop from the peak temperature of 10 keV to the value at the virial radius. We model the Chandra data from the core to the virial radius and show that the steep temperature profile is not compatible with hydrostatic equilibrium of the hot gas, and that the gas is convectively unstable at the outskirts. A possible interpretation of the Chandra data is the presence of a second phase of warm-hot gas near the clusters virial radius that is not in hydrostatic equilibrium with the clusters potential. The observations are also consistent with an alternative scenario in which the gas is significantly clumped at large radii.
59 - Tohru Nagao 2005
We analyze optical (UV rest-frame) spectra of X-ray selected narrow-line QSOs at redshift 1.5 < z < 3.7 found in the Chandra Deep Field South and of narrow-line radio galaxies at redshift 1.2 < z < 3.8 to investigate the gas metallicity of the narrow -line regions and their evolution in this redshift range. Such spectra are also compared with UV spectra of local Seyfert 2 galaxies. The observational data are inconsistent with the predictions of shock models, suggesting that the narrow-line regions are mainly photoionized. The photoionization models with dust grains predict line flux ratios which are also in disagreement with most of the observed values, suggesting that the high-ionization part of the narrow-line regions (which is sampled by the available spectra) is dust-free. The photoionization dust-free models provide two possible scenarios which are consistent with the observed data: low-density gas clouds (n < 10^3 cm^-3) with a sub-solar metallicity (0.2 < Z/Z_sun < 1.0), or high-density gas clouds (n ~ 10^5 cm^-3) with a wide range of gas metallicity (0.2 < Z/Z_sun < 5.0). Regardless of the specific interpretation, the observational data do not show any evidence for a significant evolution of the gas metallicity in the narrow-line regions within the redshift range 1.2 < z < 3.8. Instead, we find a trend for more luminous active galactic nuclei to have more metal-rich gas clouds (luminosity-metallicity relation), which is in agreement with the same finding in the studies of the broad-line regions. The lack of evolution for the gas metallicity of the narrow-line regions implies that the major epoch of star formation in the host galaxies of these active galactic nuclei is at z > 4.
In this work, we explore the diversity of ionised gas kinematics (rotational velocity $v_{phi}$ and velocity dispersion $sigma_{mathrm{g}}$) and gas-phase metallicity gradients at $0.1 leq z leq 2.5$ using a compiled data set of 74 galaxies resolved with ground-based integral field spectroscopy. We find that galaxies with the highest and the lowest $sigma_{mathrm{g}}$ have preferentially flat metallicity gradients, whereas those with intermediate values of $sigma_{mathrm{g}}$ show a large scatter in the metallicity gradients. Additionally, steep negative gradients appear almost only in rotation-dominated galaxies ($v_{phi}/sigma_{mathrm{g}} > 1$), whereas most dispersion-dominated galaxies show flat gradients. We use our recently developed analytic model of metallicity gradients to provide a physical explanation for the shape and scatter of these observed trends. In the case of high $sigma_{mathrm{g}}$, the inward radial advection of gas dominates over metal production and causes efficient metal mixing, thus giving rise to flat gradients. For low $sigma_{mathrm{g}}$, it is the cosmic accretion of metal-poor gas diluting the metallicity that gives rise to flat gradients. Finally, the reason for intermediate $sigma_{mathrm{g}}$ showing the steepest negative gradients is that both inward radial advection and cosmic accretion are weak as compared to metal production, which leads to the creation of steeper gradients. The larger scatter at intermediate $sigma_{mathrm{g}}$ may be due in part to preferential ejection of metals in galactic winds, which can decrease the strength of the production term. Our analysis shows how gas kinematics play a critical role in setting metallicity gradients in high-redshift galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا