ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-muon heat conduction in neutron star cores via the exchange of transverse plasmons

74   0   0.0 ( 0 )
 نشر من قبل Dima Yakovlev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the thermal conductivity of electrons and muons kappa_{e-mu} produced owing to electromagnetic interactions of charged particles in neutron star cores and show that these interactions are dominated by the exchange of transverse plasmons (via the Landau damping of these plasmons in nonsuperconducting matter and via a specific plasma screening in the presence of proton superconductivity). For normal protons, the Landau damping strongly reduces kappa_{e-mu} and makes it temperature independent. Proton superconductivity suppresses the reduction and restores the Fermi-liquid behavior kappa_{e-mu} ~ 1/T. Comparing with the thermal conductivity of neutrons kappa_n, we obtain kappa_{e-mu}> kappa_n for T>2 GK in normal matter and for any T in superconducting matter with proton critical temperatures T_c>3e9 K. The results are described by simple analytic formulae.


قيم البحث

اقرأ أيضاً

Heat conduction process has recently found its application in personalized recommendation [T. Zhou emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present a n improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
We study neutrino energy emission rates (emissivities) due to electron bremsstrahlung produced by $ee$ and $ep$ collisions in the superfluid neutron star cores. The neutrino emission due to $ee$ collisions is shown to be the dominant neutrino reactio n at not too high temperatures ($T la 10^8$ K) in dense matter if all other neutrino reactions involving nucleons are strongly suppressed by neutron and proton superfluidity. Simple practical expressions for the $ee$ and $ep$ neutrino emissivities are obtained. The efficiency of various neutrino reactions in the superfluid neutron-star cores is discussed for the cases of standard neutrino energy losses and the losses enhanced by the direct Urca process.
We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field $B gsim 10^{13}$ G. At density $rho simeq 10^{12}-10^{14} $ g/cm$^3$ the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity when temperature $simeq 10^8$ K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.
95 - P.S. Shternin 2008
We calculate the shear viscosity $eta = eta_{emu}+eta_{n}$ in a neutron star core composed of nucleons, electrons and muons ($eta_{emu}$ being the electron-muon viscosity, mediated by collisions of electrons and muons with charged particles, and $eta _{n}$ the neutron viscosity, mediated by neutron-neutron and neutron-proton collisions). Deriving $eta_{emu}$, we take into account the Landau damping in collisions of electrons and muons with charged particles via the exchange of transverse plasmons. It lowers $eta_{emu}$ and leads to the non-standard temperature behavior $eta_{emu}propto T^{-5/3}$. The viscosity $eta_{n}$ is calculated taking into account that in-medium effects modify nucleon effective masses in dense matter. Both viscosities, $eta_{emu}$ and $eta_{n}$, can be important, and both are calculated including the effects of proton superfluidity. They are presented in the form valid for any equation of state of nucleon dense matter. We analyze the density and temperature dependence of $eta$ for different equations of state in neutron star cores, and compare $eta$ with the bulk viscosity in the core and with the shear viscosity in the crust.
100 - J.G. Elfritz , J.A. Pons , N. Rea 2015
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ iple permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, x-ray dim isolated neutron stars, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magneto-thermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا