ﻻ يوجد ملخص باللغة العربية
We calculate the thermal conductivity of electrons and muons kappa_{e-mu} produced owing to electromagnetic interactions of charged particles in neutron star cores and show that these interactions are dominated by the exchange of transverse plasmons (via the Landau damping of these plasmons in nonsuperconducting matter and via a specific plasma screening in the presence of proton superconductivity). For normal protons, the Landau damping strongly reduces kappa_{e-mu} and makes it temperature independent. Proton superconductivity suppresses the reduction and restores the Fermi-liquid behavior kappa_{e-mu} ~ 1/T. Comparing with the thermal conductivity of neutrons kappa_n, we obtain kappa_{e-mu}> kappa_n for T>2 GK in normal matter and for any T in superconducting matter with proton critical temperatures T_c>3e9 K. The results are described by simple analytic formulae.
Heat conduction process has recently found its application in personalized recommendation [T. Zhou emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present a
We study neutrino energy emission rates (emissivities) due to electron bremsstrahlung produced by $ee$ and $ep$ collisions in the superfluid neutron star cores. The neutrino emission due to $ee$ collisions is shown to be the dominant neutrino reactio
We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the
We calculate the shear viscosity $eta = eta_{emu}+eta_{n}$ in a neutron star core composed of nucleons, electrons and muons ($eta_{emu}$ being the electron-muon viscosity, mediated by collisions of electrons and muons with charged particles, and $eta
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ