ترغب بنشر مسار تعليمي؟ اضغط هنا

A new comprehensive set of elemental abundances in DLAs III. Star formation histories

66   0   0.0 ( 0 )
 نشر من قبل Miroslava Dessauges-Zavadsky
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtained comprehensive sets of elemental abundances for eleven damped Ly-alpha systems (DLAs) at z_DLA=1.7-2.5. In Paper I of this series, we showed for three DLA galaxies that we can derive their star formation histories and ages from a detailed comparison of their intrinsic abundance patterns with chemical evolution models. We determine in this paper the star formation properties of six additional DLA galaxies. The derived results confirm that no single star formation history explains the diverse sets of abundance patterns in DLAs. We demonstrate that the various star formation histories reproducing the DLA abundance patterns are typical of local irregular, dwarf starburst and quiescent spiral galaxies. Independent of the star formation history, the DLAs have a common characteristic of being weak star forming galaxies; models with high star formation efficiencies are ruled out. All the derived DLA star formation rates per unit area are moderate or low, with values between -3.2 < log SFR < -1.1 M_sol yr^{-1} kpc^{-2}. The DLA abundance patterns require a large spread in ages ranging from 20 Myr up to 3 Gyr. The oldest DLA in our sample is observed at z_DLA=1.864 with an age estimated to more than 3 Gyr; it nicely indicates that galaxies were already forming at z_f>10. But, most of the DLAs show ages much younger than that of the Universe at the epoch of observation. Young galaxies thus seem to populate the high redshift Universe at z>2, suggesting relatively low redshifts of formation (z~3) for most high-redshift galaxies. The DLA star formation properties are compared with those of other high-redshift galaxies identified in deep imaging surveys with the aim of obtaining a global picture of high-redshift objects.

قيم البحث

اقرأ أيضاً

We present new elemental abundance studies of seven damped Lyman-alpha systems (DLAs). Together with the four DLAs analyzed in Dessauges-Zavadsky et al. (2004), we have a sample of eleven DLA galaxies with uniquely comprehensive and homogeneous abund ance measurements. These observations allow one to study the abundance patterns of 22 elements and the chemical variations in the interstellar medium of galaxies outside the Local Group. Comparing the gas-phase abundance ratios of these high redshift galaxies, we found that they show low RMS dispersions, reaching only up 2-3 times the statistical errors for the majority of elements. This uniformity is remarkable given that the quasar sightlines cross gaseous regions with HI column densities spanning over one order of magnitude and metallicities ranging from 1/55 to 1/5 solar. The gas-phase abundance patterns of interstellar medium clouds within the DLA galaxies detected along the velocity profiles show, on the other hand, a high dispersion in several abundance ratios, indicating that chemical variations seem to be more confined to individual clouds within the DLA galaxies than to integrated profiles. The analysis of the cloud-to-cloud chemical variations within seven individual DLAs reveals that five of them show statistically significant variations, higher than 0.2 dex at more than 3 sigma. The sources of these variations are both the differential dust depletion and/or ionization effects; however, no evidence for variations due to different star formation histories could be highlighted. These observations place large constraints on the mixing timescales of protogalaxies and on scenarios of galaxy formation within the CDM hierarchical theory. Finally, we provide an astrophysical determination of the oscillator strength of the NiII 1317 transition.
By combining our UVES-VLT spectra of a sample of four damped Ly-alpha systems (DLAs) toward the quasars Q0100+13, Q1331+17, Q2231-00 and Q2343+12 with the existing HIRES-Keck spectra, we covered the total spectral range from 3150 to 10000 A for the f our quasars. This large wavelength coverage and the high quality of the spectra allowed us to measure the column densities of up to 21 ions, namely of 15 elements - N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Mn, Fe, Ni, Zn. Such a large amount of information is necessary to constrain the photoionization and dust depletion effects, two important steps in order to derive the intrinsic chemical abundance patterns of DLAs. We evaluated the photoionization effects with the help of the Al+/Al++, Fe+/Fe++, N0/N+ and Ar/Si,S ratios, and computed dust corrections. Our analysis revealed that the DLA toward Q2343+12 requires important ionization corrections. The access to the complete series of relatively robust intrinsic elemental abundances in the other three DLAs allowed us to constrain their star formation history, their age and their star formation rate by a detailed comparison with a grid of chemical evolution models for spiral and dwarf irregular galaxies. Our results show that the galaxies associated with these three DLAs in the redshift interval z_abs = 1.7-2.5 are either outer regions of spiral disks (radius >= 8 kpc) or dwarf irregular galaxies (with a bursting or continuous star formation history) with ages varying from some 50 Myr only to >~ 3.5 Gyr and with moderate star formation rates per unit area of -2.1 < log psi < -1.5 M_{sol} yr^{-1} kpc^{-2}.
Galaxy evolution is generally affected by tidal interactions. Firstly, in this series, we reported several effects which suggest that tidal interactions contribute to regulating star formation (SF). To confirm that so, we now compare stellar mass ass embly histories and SF look-back time annular profiles between CALIFA survey tidally and non-tidally perturbed galaxies. We pair their respective star-forming regions at the closest stellar mass surface densities to reduce the influence of stellar mass. The assembly histories and annular profiles show statistically significant differences so that higher star formation rates characterize regions in tidally perturbed galaxies. These regions underwent a more intense (re)activation of SF in the last 1 Gyr. Varying shapes of the annular profiles also reflect fluctuations between suppression and (re)activation of SF. Since gas-phase abundances use to be lower in more actively than in less actively star-forming galaxies, we further explore the plausible presence of metal-poor gas inflows able to dilute such abundances. The resolved relations of oxygen (O) abundance, with stellar mass density and with total gas fraction, show slightly lower O abundances for regions in tidally perturbed galaxies. The single distributions of O abundances statistically validate that so. Moreover, from a metallicity model based on stellar feedback, the mass rate differentials (inflows$-$outflows) show statistically valid higher values for regions in tidally perturbed galaxies. These differentials, and the metal fractions from the population synthesis, suggest dominant gas inflows in these galaxies. This dominance, and the differences in SF through time, confirm the previously reported effects of tidal interactions on SF.
43 - Simon Dye 2008
A new method of determining galaxy star-formation histories (SFHs) is presented. Using the method, the feasibility of recovering SFHs with multi-band photometry is investigated. The method divides a galaxys history into discrete time intervals and re constructs the average rate of star formation in each interval. This directly gives the total stellar mass. A simple linear inversion solves the problem of finding the most likely discretised SFH for a given set of galaxy parameters. It is shown how formulating the method within a Bayesian framework lets the data simultaneously select the optimal regularisation strength and the most appropriate number of discrete time intervals for the reconstructed SFH. The method is demonstrated by applying it to mono-metallic synthetic photometric catalogues created with different input SFHs, assessing how the accuracy of the recovered SFHs and stellar masses depend on the photometric passband set, signal-to-noise and redshift. The results show that reconstruction of SFHs using multi-band photometry is possible, being able to distinguish an early burst of star formation from a late one, provided an appropriate passband set is used. Although the resolution of the recovered SFHs is on average inferior compared to what can be achieved with spectroscopic data, the multi-band approach can process a significantly larger number of galaxies per unit exposure time.
We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the effica cy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, red and dead galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا