ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on ``Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

373   0   0.0 ( 0 )
 نشر من قبل Beno\\^it Gr\\'emaud
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent Letter (Phys. Rev. Lett. textbf{98}, 083601 (2007), arXiv:cond-mat/0610804), O. Assaf and E. Akkermans claim that the angular correlations of the light intensity scattered by a cloud of cold atoms with internal degeneracy (Zeeman sublevels) of the ground state overcome the usual Rayleigh law. More precisely, they found that they become exponentially large with the size of the sample. In what follows, we will explain why their results are wrong and, in contrary, why the internal degeneracy leads to lower intensity correlations.

قيم البحث

اقرأ أيضاً

We study the influence of three laser beams on the center of mass motion of cold atoms with internal energy levels in a tripod configuration. We show that similar to electrons in graphene the atomic motion can be equivalent to the dynamics of ultra-r elativistic two-component Dirac fermions. We propose and analyze an experimental setup for observing such a quasi-relativistic motion of ultracold atoms. We demonstrate that the atoms can experience negative refraction and focussing by Veselago-type lenses. We also show how the chiral nature of the atomic motion manifests itself as an oscillation of the atomic internal state population which depends strongly on the direction of the center of mass motion. For certain directions an atom remains in its initial state, whereas for other directions the populations undergo oscillations between a pair of internal states.
136 - F. Renzoni 2011
Brownian motors, or ratchets, are devices which rectify Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, an d indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.
We formulate a Bardeen-Cooper-Schriffer (BCS) theory of quasiparticles in a degenerate Fermi gas strongly coupled to photons in a optical cavity. The elementary photonic excitations of the system are cavity polaritons, which consist of a cavity photo n and an excitation of an atom within the Fermi sea. The excitation of the atom out of the Fermi sea leaves behind a hole, which together results in a loosely bound Cooper pair, allowing for the system to be written by a BCS wavefunction. As the density of the excitations is increased, the excited atom and hole become more strongly bound, crossing over into the molecular regime. This thus realizes an alternative BCS to BEC crossover scenario, where the participating species are quasiparticle excitations in a Fermi sea consisting of excited atoms and holes.
We study fluctuations of the conductance of micron-sized graphene devices as a function of the Fermi energy and magnetic field. The fluctuations are studied in combination with analysis of weak localization which is determined by the same scattering mechanisms. It is shown that the variance of conductance fluctuations depends not only on inelastic scattering that controls dephasing but also on elastic scattering. In particular, contrary to its effect on weak localization, strong intervalley scattering suppresses conductance fluctuations in graphene. The correlation energy, however, is independent of the details of elastic scattering and can be used to determine the electron temperature of graphene structures.
79 - N. Akopian , R. Trotta , E. Zallo 2013
Single-photon sources that emit photons at the same energy play a key role in the emerging concepts of quantum information, such as entanglement swapping, quantum teleportation and quantum networks. They can be realized in a variety of systems, where semiconductor quantum dots, or artificial atoms, are arguably among the most attractive. However, unlike natural atoms, no two artificial atoms are alike. This peculiarity is a serious hurdle for quantum information applications that require photonic quantum states with identical energies. Here we demonstrate a single artificial atom that generates photons with an absolute energy that is locked to an optical transition in a natural atom. Furthermore, we show that our system is robust and immune to drifts and fluctuations in the environment of the emitter. Our demonstration is crucial for realization of a large number of universally-indistinguishable solid-state systems at arbitrary remote locations, where frequency-locked artificial atoms might become fundamental ingredients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا