ﻻ يوجد ملخص باللغة العربية
As part of an effort to enlarge the number of well-studied Magellanic-type galaxies, we obtained broadband optical imaging and neutral hydrogen radio synthesis observations of the dwarf irregular galaxy ESO 364-G 029. The optical morphology characteristically shows a bar-like main body with a one-sided spiral arm, an approximately exponential light distribution, and offset photometric and kinematic centers. The HI distribution is mildly asymmetric and, although slightly offset from the photometric center, roughly follows the optical brightness distribution, extending to over 1.2 Holmberg radii (where mu_B = 26.5 mag/arcsec^2). In particular, the highest HI column densities closely follow the bar, one-arm spiral, and a third optical extension. The rotation is solid-body in the inner parts but flattens outside of the optical extent. The total HI flux F_HI = 23.1 pm 1.2 Jy km/s, yielding a total HI mass M_HI= (6.4 pm 1.7) x 10^8 Msun (for a distance D = 10.8 pm 1.4 Mpc) and a total HI mass-to-blue-luminosity ratio M_HI/L_B = (0.96 pm 0.14) Msun / Lsun,B (distance independent). The HI data suggest a very complex small-scale HI structure, with evidence of large shells and/or holes, but deeper observations are required for a detailed study. Follow-up observations are also desirable for a proper comparison with the Large Magellanic Cloud, where despite an optical morphology very similar to ESO 364-G 029 the HI bears little resemblance to the optical.
Context. Outflows powered by the injection of kinetic energy from massive stars can strongly affect the chemical evolution of galaxies, in particular of dwarf galaxies, as their lower gravitational potentials enhance the chance of a galactic wind.
Abridged. Context. The metal content of dwarf galaxies and the metal enrichment of the intergalactic medium both suggest that mass loss from galaxies is a significant factor for the chemical evolution history of galaxies, in particular of dwarf galax
Using two HST/ACS data-sets that are separated by ~2 years has allowed us to derive the relative proper-motion for the Sagittarius dwarf irregular (SagDIG) and reduce the heavy foreground Galactic contamination. The proper-motion decontaminated SagDI
We have observed the Blue Compact Dwarf (BCD) galaxy He 2-10 in the 10 microns mid-infrared (MIR) atmospheric window using broad-band filters centered at lambda=10.1 microns and lambda=11.65 microns. In both filters, only the galaxys central regions
We present the results of three commissioning HI observations obtained with the MeerKAT radio telescope. These observations make up part of the preparation for the forthcoming MHONGOOSE nearby galaxy survey, which is a MeerKAT large survey project th