ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoelectric phenomena in structures based on high-resistivity semiconductor crystals with a thin insulator layer at the semiconductor-metal boundary

54   0   0.0 ( 0 )
 نشر من قبل Alex Tomasov Alexsandrovich
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A previously unknown effect-giant spatial redistribution of the electric field strength in a crystal under illumination of the structure - was discovered and investigated in real photoresistors on high-resistivity (semi-insulating) semiconductor CdTe crystals (in metal-thin insulator- semiconductor-thin insulator -metal structures). A new concept is proposed for photoelectric phenomena in high- resistivity semiconductor crystals. The concept is based on the idea that the redistribution of the field under such conditions that the carrier lifetime remains unchanged under illumination plays a determining role in these phenomena. The nature of the effect is described, the dependence of the characteristics of the structures on the parameters of the crystal and the insulator layers is explained by the manifestation of this effect, and ways to produce structures with prescribed photoelectric characteristics for new devices and scientific methods are examined.


قيم البحث

اقرأ أيضاً

Optical control of electronic spins is the basis for ultrafast spintronics: circularly polarized light in combination with spin-orbit coupling of the electronic states allows for spin manipulation in condensed matter. However, the conventional approa ch is limited to spin orientation along one particular orientation that is dictated by the direction of photon propagation. Plasmonics opens new capabilities, allowing one to tailor the light polarization at the nanoscale. Here, we demonstrate ultrafast optical excitation of electron spin on femtosecond time scales via plasmon to exciton spin conversion. By time-resolving the THz spin dynamics in a hybrid (Cd,Mn)Te quantum well structure covered with a metallic grating, we unambiguously determine the orientation of the photoexcited electron spins which is locked to the propagation direction of surface plasmon-polaritons. Using the spin of the incident photons as additional degree of freedom, one can orient the photoexcited electron spin at will in a two-dimensional plane.
61 - S. Tongay , M. Lemaitre , X. Miao 2011
Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, we report on the unusual physics and promising technical applications associated with the formation of Schottky barriers at the interface of a one-atom-thick zero-gap semiconduct or (graphene) and conventional semiconductors. When chemical vapor deposited graphene is transferred onto n-type Si, GaAs, 4H-SiC and GaN semiconductor substrates, there is a strong van der Waals attraction that is accompanied by charge transfer across the interface and the formation of a rectifying (Schottky) barrier. Thermionic emission theory in conjunction with the Schottky-Mott model within the context of bond-polarization theory provides a surprisingly good description of the electrical properties. Applications, such as to sensors where in forward bias there is exponential sensitivity to changes in the Schottky barrier height due to the presence of absorbates on the graphene or to analogue devices for which Schottky barriers are integral components are promising because of graphenes mechanical stability, its resistance to diffusion, its robustness at high temperatures and its demonstrated capability to embrace multiple functionalities.
Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductor s heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation XOI to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {mu}m.
Based on measurements of angle resolved photoemission, we report that in the Pb/Ge(111)- sqrt{3}xsqrt{3} R30^circ structure, in addition to three bands resembling Ge heavy hole (HH), light hole (LH), and split off (SO) bulk band edges, a fourth dispe rsive band resembling the non split off (NSO) band is found near the surface zone center. While three Ge bulk-like bands get distorted due to strong coupling between Pb and Ge, the NSO-like band gets weaker and disappears for larger thickness of Pb, which, when combined with ab initio calculations, indicates its localized nature within space charge layer. Our results are clearly important for designing electronics involved with metal-semiconductor contacts.
We demonstrate highly efficient spin injection at low and room temperature in an AlGaAs/GaAs semiconductor heterostructure from a CoFe/AlOx tunnel spin injector. We use a double-step oxide deposition for the fabrication of a pinhole-free AlOx tunnel barrier. The measurements of the circular polarization of the electroluminescence in the Oblique Hanle Effect geometry reveal injected spin polarizations of at least 24% at 80K and 12% at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا