ترغب بنشر مسار تعليمي؟ اضغط هنا

The 1 keV to 200 keV X-ray Spectrum of NGC 2992 and NGC 3081

161   0   0.0 ( 0 )
 نشر من قبل Volker Beckmann
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Seyfert 2 galaxies NGC 2992 and NGC 3081 have been observed by INTEGRAL and Swift. We report about the results and the comparison of the spectrum above 10 keV based on INTEGRAL IBIS/ISGRI, Swift/BAT, and BeppoSAX/PDS. A spectrum can be extracted in the X-ray energy band ranging from 1 keV up to 200 keV. Although NGC 2992 shows a complex spectrum below 10 keV, the hard tail observed by various missions exhibits a slope with photon index = 2, independent on the flux level during the observation. No cut-off is detectable up to the detection limit around 200 keV. In addition, NGC 3081 is detected in the INTEGRAL and Swift observation and also shows an unbroken Gamma = 1.8 spectrum up to 150 keV. These two Seyfert galaxies give further evidence that a high-energy cut-off in the hard X-ray spectra is often located at energies E_C >> 100 keV. In NGC 2992 a constant spectral shape is observed over a hard X-ray luminosity variation by a factor of 11. This might indicate that the physical conditions of the emitting hot plasma are constant, while the amount of plasma varies, due to long-term flaring activity.



قيم البحث

اقرأ أيضاً

176 - D. Dal Fiume 1997
The X-ray pulsar Her X-1 was observed for more than two orbital cycles near the maximum of the 35 day X-ray intensity cycle by the Narrow Field Instruments on-board the BeppoSAX satellite. We present the first simultaneous measurement of the 0.1-200 keV spectrum. Three distinct continuum components are evident in the phase averaged spectrum: a low energy excess, modeled as a 0.1 keV blackbody; a power-law and a high energy cut-off. Superposed on this continuum are Fe L and K emission features at 1.0 and 6.5 keV, respectively, and a ~40 keV cyclotron absorption feature. The cyclotron feature can be clearly seen in raw count spectra. We present the properties of the cyclotron feature with unprecedented precision and discuss the indications given by this measurement on the physical properties of the emitting region.
128 - M.Guainazzi 1999
We report on the first observation of the Seyfert 1 galaxy NGC4593 in the 0.1-200 keV band, performed with the BeppoSAX observatory. Its spectral components are for the first time simultaneously measured: a power-law with photon spectral index ~1.9; the Compton-reflection of the primary power-law; a moderately broad (>60 eV) K-alpha fluorescent line from neutral iron; and an absorption edge, whose threshold energy is consistent with K-shell photoionization from OVII. The amount of reflection and the iron line properties are consistent with both being produced in a plane-parallel, X-ray illuminated relativistic accretion disc surrounding the nuclear black hole, seen at an inclination of 30 degrees. Any cutoff of the intrinsic continuum is constrained to lay above 150 keV. The claim for a strongly variable soft excess is dismissed by our data and by a reanalysis of archival ASCA and ROSAT data.
71 - Wei Cui 1996
We observed several nearby face-on spiral galaxies with the ROSAT PSPC. The apparent deficiency in soft X-ray surface brightness observed at the outer portion of their disks is consistent with the absorption of the extragalactic soft X-ray background by material associated with these galaxies, and allows us to place a lower limit on the intensity of this cosmologically important background. From the depth of the soft X-ray shadow observed in NGC 3184, a 95% confidence lower limit was derived to be $32 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV. This was obtained by assuming that there is no unresolved 1/4 keV X-ray emission from the outer region of the galaxy which may otherwise partially fill in the shadow: any such emission, or any unresolved structure in the absorbing gas, would imply a larger value. In the deepest exposure to date in this energy range, Hasinger et al. (1993) resolved about $30 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV into discrete sources; our current limit is therefore consistent with an extragalactic origin for all of these sources. Our results can also be directly compared with the corresponding upper limit derived from the ROSAT PSPC detection of soft X-ray shadows cast by high-latitude clouds in Ursa Major, $simeq 65 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV. The lower and upper limits are only a factor of 2 apart, and begin to provide a reasonable measurement of the intensity of the 1/4 keV extragalactic X-ray background.
264 - T. Maiolino , F. DAmico , J. Braga 2013
We have analyzed a long-term database for Sco X-1 obtained with the telescope IBIS onboard the INTEGRAL satellite in order to study the hard X-ray behavior of Sco X-1 from 20 up to 200 keV. Besides the data used for producing of the INTEGRAL catalog of sources, this is the longest (412 ks) database of IBIS on Sco X-1 up to date. The production of hard X-ray tails in low-mass X-ray binaries is still a matter of debate. Since most of the fits to the high-energy part of the spectra are done with powerlaw models, the physical mechanism for the hard X-ray tail production is unclear. The purpose of this study is to better constrain those possible mechanisms. Our main result shows a strong correlation between the fluxes in the thermal and nonthermal part of Sco X-1 spectra. We thus suggest that Comptonization of lower energy photons is the mechanism for producing hard X-ray tails in Sco X-1.
Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~ 10^6 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun, but has significant contribut ions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the local hot bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components, but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B bands (115-188 eV) where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا