ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Simulations of Quantum Spin Systems in the Valence Bond Basis

201   0   0.0 ( 0 )
 نشر من قبل Anders W. Sandvik
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a projector Monte Carlo method for quantum spin models formulated in the valence bond basis, using the S=1/2 Heisenberg antiferromagnet as an example. Its singlet ground state can be projected out of an arbitrary basis state as the trial state, but a more rapid convergence can be obtained using a good variational state. As an alternative to first carrying out a time consuming variational Monte Carlo calculation, we show that a very good trial state can be generated in an iterative fashion in the course of the simulation itself. We also show how the properties of the valence bond basis enable calculations of quantities that are difficult to obtain with the standard basis of Sz eigenstates. In particular, we discuss quantities involving finite-momentum states in the triplet sector, such as the dispersion relation and the spectral weight of the lowest triplet.



قيم البحث

اقرأ أيضاً

We show how efficient loop updates, originally developed for Monte Carlo simulations of quantum spin systems at finite temperature, can be combined with a ground-state projector scheme and variational calculations in the valence bond basis. The metho ds are formulated in a combined space of spin z-components and valence bonds. Compared to schemes formulated purely in the valence bond basis, the computational effort is reduced from up to O(N^2) to O(N) for variational calculations, where N is the system size, and from O(m^2) to O(m) for projector simulations, where m>> N is the projection power. These improvements enable access to ground states of significantly larger lattices than previously. We demonstrate the efficiency of the approach by calculating the sublattice magnetization M_s of the two-dimensional Heisenberg model to high precision, using systems with up to 256*256 spins. Extrapolating the results to the thermodynamic limit gives M_s=0.30743(1). We also discuss optimized variational amplitude-product states, which were used as trial states in the projector simulations, and compare results of projecting different types of trial states.
261 - A. W. Sandvik , G. Vidal 2007
We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approac h by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D*D matrices with D up to 48. The computational cost of our scheme formally scales as ND^3, whereas standard MPS approaches and the related density matrix renromalization group method scale as ND^5 and ND^6, respectively, for periodic systems.
197 - Ribhu K. Kaul 2015
We introduce a simple model of SO($N$) spins with two-site interactions which is amenable to quantum Monte-Carlo studies without a sign problem on non-bipartite lattices. We present numerical results for this model on the two-dimensional triangular l attice where we find evidence for a spin nematic at small $N$, a valence-bond solid (VBS) at large $N$ and a quantum spin liquid at intermediate $N$. By the introduction of a sign-free four-site interaction we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.
The negative sign problem in quantum Monte Carlo (QMC) simulations of cluster impurity problems is the major bottleneck in cluster dynamical mean field calculations. In this paper we systematically investigate the dependence of the sign problem on th e single-particle basis. We explore both the hybridization-expansion and the interaction-expansion variants of continuous-time QMC for three-site and four-site impurity models with baths that are diagonal in the orbital degrees of freedom. We find that the sign problem in these models can be substantially reduced by using a non-trivial single-particle basis. Such bases can be generated by diagonalizing a subset of the intracluster hoppings.
An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments only. By construction, this quantum state is the result of an underlying valence bond structure without breaking any symmetry in the lattice or s pin spaces. A detailed analysis of the correlations of the quantum state is given (using a mapping to a 2D classical statistical model and methods in field theory like mapping to the non-linear sigma model or bosonization techniques) as well as the results of numerical treatments (regarding exact diagonalization and variational methods). Finally, the physical relevance of the model is motivated. A comparison of the model to known anti-ferromagnetic Mott-Hubbard insulators is given by means of the two-point equal-time correlation function obtained i) numerically from the suggested state and ii) experimentally from neutron scattering on cuprates in the anti-ferromagnetic insulator phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا