ترغب بنشر مسار تعليمي؟ اضغط هنا

Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple metastable phases

88   0   0.0 ( 0 )
 نشر من قبل David P. Sanders
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a simple nearest-neighbor spin model with multiple metastable phases, the number and decay pathways of which are explicitly controlled by the parameters of the system. With this model we can construct, for example, a system which evolves through an arbitrarily long succession of metastable phases. We also construct systems in which different phases may nucleate competitively from a single initial phase. For such a system, we present a general method to extract from numerical simulations the individual nucleation rates of the nucleating phases. The results show that the Ostwald rule, which predicts which phase will nucleate, must be modified probabilistically when the new phases are almost equally stable. Finally, we show that the nucleation rate of a phase depends, among other things, on the number of other phases accessible from it.

قيم البحث

اقرأ أيضاً

In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilit ated by the metastable phase because the latter can wet the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier since surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work we discuss a density functional theory (DFT) based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order parameter dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of Ostwald step rule and the well-known phenomenon of disappearing polymorphs that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics some of which may be explored via modern nanoscopic synthetic methods.
The existence and limits of metastable droplets have been calculated using finite-system renormalization-group theory, for q-state Potts models in spatial dimension d=3. The dependence of the droplet critical sizes on magnetic field, temperature, and number of Potts states q has been calculated. The same method has also been used for the calculation of hysteresis loops across first-order phase transitions in these systems. The hysteresis loop sizes and shapes have been deduced as a function of magnetic field, temperature, and number of Potts states q. The uneven appearance of asymmetry in the hysteresis loop branches has been noted. The method can be extended to criticality and phase transitions in metastable phases, such as in surface-adsorbed systems and water.
69 - Kyungwha Park 2003
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun . Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.
We study the kinetics of the two-dimensional q > 4-state Potts model after a shallow quench slightly below the critical temperature and above the pseudo spinodal. We use numerical methods and we focus on intermediate values of q, 4 < q < 100. We show that, initially, the system evolves as if it were quenched to the critical temperature. The further decay from the metastable state occurs by nucleation of k out of the q possible phases. For a given quench temperature, k is a logarithmically increasing function of the system size. This unusual finite size dependence is a consequence of a scaling symmetry underlying the nucleation phenomenon for these parameters.
We develop a theory in order to describe the effect of relaxation in a condensed medium upon the quantum decay of a metastable liquid near the spinodal at low temperatures. We find that both the regime and the rate of quantum nucleation strongly depe nd on the relaxation time and its temperature behavior. The quantum nucleation rate slows down with the decrease of the relaxation time. We also discuss the low temperature experiments on cavitation in normal $^3$He and superfluid $^4$He at negative pressures. It is the sharp distinctions in the high frequency sound mode and in the temperature behavior of the relaxation time that make the quantum cavitation kinetics in $^3$He and $^4$He completely different in kind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا