ﻻ يوجد ملخص باللغة العربية
We classify all fusion categories for a given set of fusion rules with three simple object types. If a conjecture of Ostrik is true, our classification completes the classification of fusion categories with three simple object types. To facilitate the discussion we describe a convenient, concrete and useful variation of graphical calculus for fusion categories, discuss pivotality and sphericity in this framework, and give a short and elementary re-proof of the fact that the quadruple dual functor is naturally isomorphic to the identity.
We establish rank-finiteness for the class of $G$-crossed braided fusion categories, generalizing the recent result for modular categories and including the important case of braided fusion categories. This necessitates a study of slightly degenerate
A braided monoidal category may be considered a $3$-category with one object and one $1$-morphism. In this paper, we show that, more generally, $3$-categories with one object and $1$-morphisms given by elements of a group $G$ correspond to $G$-crosse
We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has F if the associa
For a braided fusion category $mathcal{V}$, a $mathcal{V}$-fusion category is a fusion category $mathcal{C}$ equipped with a braided monoidal functor $mathcal{F}:mathcal{V} to Z(mathcal{C})$. Given a fixed $mathcal{V}$-fusion category $(mathcal{C}, m
This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modula