ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Graded Modified Classical Yang-Baxter Equations and Integrable Systems

246   0   0.0 ( 0 )
 نشر من قبل Sedra Moulay Brahim
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $6 = 3times 2$ huge Lie algebra $Xi$ of all local and non local differential operators on a circle is applied to the standard Adler-Kostant-Symes (AKS) R-bracket sckeme. It is shown in particular that there exist three additional Lie structures, associated to three graded modified classical Yang-Baxter(GMCYB) equations. As we know from the standard case, these structures can be used to classify in a more consitent way a wide class of integrable systems. Other algebraic properties are also presented.



قيم البحث

اقرأ أيضاً

In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally, we introduce the notion of Hom-Yang-Baxter systems and obtain two kinds of Hom-Yang-Baxter systems.
The dimer model on a strip is considered as a Yang-Baxter mbox{integrable} six vertex model at the free-fermion point with crossing parameter $lambda=tfrac{pi}{2}$ and quantum group invariant boundary conditions. A one-to-many mapping of vertex onto dimer configurations allows for the solution of the free-fermion model to be applied to the anisotropic dimer model on a square lattice where the dimers are rotated by $45degree$ compared to their usual orientation. In a suitable gauge, the dimer model is described by the Temperley-Lieb algebra with loop fugacity $beta=2coslambda=0$. It follows that the model is exactly solvable in geometries of arbitrary finite size. We establish and solve transfer matrix inversion identities on the strip with arbitrary finite width $N$. In the continuum scaling limit, in sectors with magnetization $S_z$, we obtain the conformal weights $Delta_{s}=big((2-s)^2-1big)/8$ where $s=|S_z|+1=1,2,3,ldots$. We further show that the corresponding finitized characters $chit_s^{(N)}(q)$ decompose into sums of $q$-Narayana numbers or, equivalently, skew $q$-binomials. In the particle representation, the local face tile operators give a representation of the fermion algebra and the fermion particle trajectories play the role of nonlocal degrees of freedom. We argue that, in the continuum scaling limit, there exist nontrivial Jordan blocks of rank 2 in the Virasoro dilatation operator $L_0$. This confirms that, with quantum group invariant boundary conditions, the dimer model gives rise to a {em logarithmic} conformal field theory with central charge $c=-2$, minimal conformal weight $Delta_{text{min}}=-frac{1}{8}$ and effective central charge $c_{text{eff}}=1$.Our analysis of the structure of the ensuing rank 2 modules indicates that the familiar staggered $c=-2$ modules appear as submodules.
A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every $n ge 2$. If we view such an operator as a quantum-computational gate, then topological braiding correspo nds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., $d = 2$) solutions, and some simple families that include solutions for arbitrary $d ge 2$. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.
124 - A.P.Isaev , S.O.Krivonos 2021
We construct characteristic identities for the split (polarized) Casimir operators of the simple Lie algebras in defining (minimal fundamental) and adjoint representations. By means of these characteristic identities, for all simple Lie algebras we d erive explicit formulae for invariant projectors onto irreducible subrepresentations in T^{otimes 2} in two cases, when T is the defining and the adjoint representation. In the case when T is the defining representation, these projectors and the split Casimir operator are used to explicitly write down invariant solutions of the Yang-Baxter equations. In the case when T is the adjoint representation, these projectors and characteristic identities are considered from the viewpoint of the universal description of the simple Lie algebras in terms of the Vogel parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا