ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Cryptography using entangled photons in energy-time Bell states

135   0   0.0 ( 0 )
 نشر من قبل Wolfgang Tittel
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasability in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using 4-dimensional energy-time states, no fast random change of bases is required in our setup : Nature itself decides whether to measure in the energy or in the time base.

قيم البحث

اقرأ أيضاً

94 - W. Tittel , J. Brendel , N. Gisin 1998
Long-distance Bell-type experiments are presented. The different experimental challenges and their solutions in order to maintain the strong quantum correlations between energy-time entangled photons over more than 10 km are reported and the results analyzed from the point of view of tests of fundamental physics as well as from the more applied side of quantum communication, specially quantum key distribution. Tests using more than one analyzer on each side are also presented.
Many quantum advantages in metrology and communication arise from interferometric phenomena. Such phenomena can occur on ultrafast time scales, particularly when energy-time entangled photons are employed. These have been relatively unexplored as the ir observation necessitates time resolution much shorter than conventional photon counters. Integrating nonlinear optical gating with conventional photon counters can overcome this limitation and enable subpicosecond time resolution. Here, using this technique and a Franson interferometer, we demonstrate high-visibility quantum interference with two entangled photons, where the one- and two-photon coherence times are both subpicosecond. We directly observe the spectral and temporal interference patterns, measure a visibility in the two-photon coincidence rate of $(85.3pm0.4)%$, and report a CHSH-Bell parameter of $2.42pm0.02$, violating the local-hidden variable bound by 21 standard deviations. The demonstration of energy-time entanglement with ultrafast interferometry provides opportunities for examining and exploiting entanglement in previously inaccessible regimes.
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polari zation entangled photon pairs substantially alleviates the security threads while allowing for basically arbitrary transmission distances when embedded in quantum repeater schemes. Semiconductor quantum dots are capable of emitting highly entangled photon pairs with ultra-low multi-pair emission probability even at maximum brightness. Here we report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1). For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By embedding them in state-of-the-art photonic structures, key generation rates in the Gbit/s range are at reach.
A photon source based on postselection from entangled photon pairs produced by parametric frequency down-conversion is suggested. Its ability to provide good approximations of single-photon states is examined. Application of this source in quantum cr yptography for quantum key distribution is discussed. Advantages of the source compared to other currently used sources are clarified. Future prospects of the photon source are outlined.
227 - Xingxiang Zhou 2001
We propose a novel scheme for nondistortion quantum interrogation (NQI), defined as an interaction-free measurement which preserves the internal state of the object being detected. In our scheme, two EPR entangled photons are used as the probe and po larization sensitive measurements are performed at the four ports of the Mach-Zehnder interferometer. In comparison with the previous single photon scheme, it is shown that the two photon approach has a higher probability of initial state preserving interrogation of an atom prepared in a quantum superposition. In the case that the presence of the atom is not successfully detected, the experiment can be repeated since the initial state of the atom is unperturbed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا