ﻻ يوجد ملخص باللغة العربية
Differents formalismes sont utilises en mecanique quantique pour la description des etats et des observables : la mecanique ondulatoire, la mecanique matricielle et le formalisme invariant. Nous discutons les problemes et inconvenients du formalisme invariant ainsi que ceux de la notation des bras et kets introduite par Dirac dans ce contexte. Nous indiquons comment tous les problemes peuvent etre resolus ou du moins evites. Une serie dexemples illustre les points souleves et montre comment linsouciance mathematique peut aisement conduire a des contradictions mathematiques surprenantes.
From 2010, the medical transport has become one of the top ten priorities of the risk management plan in France because of the increase in the cost. For social and medico-social institutions (MSI), this cost represents the second after that of the wa
Nous montrons que les equations du rep`ere mobile des surfaces de Bonnet conduisent `a une paire de Lax matricielle isomonodromique dordre deux pour la sixi`eme equation de Painleve. We show that the moving frame equations of Bonnet surfaces can be
These last years, there were many studies on the problem of the conflict coming from information combination, especially in evidence theory. We can summarise the solutions for manage the conflict into three different approaches: first, we can try to
Being aware of the motivation problems observed in many scientific oriented careers, we present two experiences to expose to college students to environments, methodologies and discovery techniques addressing contemporary problems. This experiences a
We propose a formula expressing Perron - Frobenius eigenvectors of Cartan matrices in terms of products of values of the Gamma function.