ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information and physics: some future directions

158   0   0.0 ( 0 )
 نشر من قبل John Preskill
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Preskill




اسأل ChatGPT حول البحث

I consider some promising future directions for quantum information theory that could influence the development of 21st century physics. Advances in the theory of the distinguishability of superoperators may lead to new strategies for improving the precision of quantum-limited measurements. A better grasp of the properties of multi-partite quantum entanglement may lead to deeper understanding of strongly-coupled dynamics in quantum many-body systems, quantum field theory, and quantum gravity.



قيم البحث

اقرأ أيضاً

We review of the interface between (theoretical) physics and information for non-experts. The origin of information as related to the notion of entropy is described, first in the context of thermodynamics then in the context of statistical mechanics. A close examination of the foundations of statistical mechanics and the need to reconcile the probabilistic and deterministic views of the world leads us to a discussion of chaotic dynamics, where information plays a crucial role in quantifying predictability. We then discuss a variety of fundamental issues that emerge in defining information and how one must exercise care in discussing concepts such as order, disorder, and incomplete knowledge. We also discuss an alternative form of entropy and its possible relevance for nonequilibrium thermodynamics. In the final part of the paper we discuss how quantum mechanics gives rise to the very different concept of quantum information. Entirely new possibilities for information storage and computation are possible due to the massive parallel processing inherent in quantum mechanics. We also point out how entropy can be extended to apply to quantum mechanics to provide a useful measurement for quantum entanglement. Finally we make a small excursion to the interface betweeen quantum theory and general relativity, where one is confronted with an ultimate information paradox posed by the physics of Black Holes. In this review we have limited ourselves; not all relevant topics that touch on physics and information could be covered.
We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-$N$ gauge theories. For concreteness, we focus on a simple holographic $(2+1)$-dimension al strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a $U(1)$ gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic $c$-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.
Podcasts are spoken documents across a wide-range of genres and styles, with growing listenership across the world, and a rapidly lowering barrier to entry for both listeners and creators. The great strides in search and recommendation in research an d industry have yet to see impact in the podcast space, where recommendations are still largely driven by word of mouth. In this perspective paper, we highlight the many differences between podcasts and other media, and discuss our perspective on challenges and future research directions in the domain of podcast information access.
The aim of the present paper is twofold. First, to give the main ideas behind quantum computingand quantum information, a field based on quantum-mechanical phenomena. Therefore, a shortreview is devoted to (i) quantum bits or qubits (and more general ly qudits), the analogues of theusual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantummechanics, namely, linearity (which manifests itself through the superposition of qubits and theaction of unitary operators on qubits) and entanglement of certain multi-qubit states (a resourcethat is specific to quantum mechanics). Second, to focus on some mathematical problems relatedto the so-called mutually unbiased bases used in quantum computing and quantum informationprocessing. In this direction, the construction of mutually unbiased bases is presented via twodistinct approaches: one based on the group SU(2) and the other on Galois fields and Galois rings.
We demonstrate that the concept of information offers a more complete description of complementarity than the traditional approach based on observables. We present the first experimental test of information complementarity for two-qubit pure states, achieving close agreement with theory; We also explore the distribution of information in a comprehensive range of mixed states. Our results highlight the strange and subtle properties of even the simplest quantum systems: for example, entanglement can be increased by reducing correlations between two subsystems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا