ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution

56   0   0.0 ( 0 )
 نشر من قبل Dr. Daniel A. Lidar
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Biron




اسأل ChatGPT حول البحث

Grovers algorithm for quantum searching of a database is generalized to deal with arbitrary initial amplitude distributions. First order linear difference equations are found for the time evolution of the amplitudes of the r marked and N-r unmarked states. These equations are solved exactly. An expression for the optimal measurement time T sim O(sqrt{N/r}) is derived which is shown to depend only on the initial average amplitudes of the marked and unmarked states. A bound on the probability of measuring a marked state is derived, which depends only on the standard deviation of the initial amplitude distributions of the marked or unmarked states.



قيم البحث

اقرأ أيضاً

61 - Eli Biham 1998
Grovers algorithm for quantum searching is generalized to deal with arbitrary initial complex amplitude distributions. First order linear difference equations are found for the time evolution of the amplitudes of the marked and unmarked states. These equations are solved exactly. New expressions are derived for the optimal time of measurement and the maximal probability of success. They are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments. Our results imply that Grovers algorithm is robust against modest noise in the amplitude initialization procedure.
We investigate the role of quantum coherence depletion (QCD) in Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure ($mathcal{C}_r$), we show that the success probability depends on the QCD. The same phenomenon is also found by using the $l_1$ norm of coherence measure ($mathcal{C}_{l_1}$). In the limit case, the cost performance is defined to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to the number of searcher items and the scale of database, no matter using $mathcal{C}_r$ or $mathcal{C}_{l_1}$. In generalized Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement, multipartite entanglement, pairwise discord and genuine multipartite discord, cannot be directly related to the success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichnys inequality are not violated.
We consider the Grover search algorithm implementation for a quantum register of size $N = 2^k$ using k (or k +1) microwave- and laser-driven Rydberg-blockaded atoms, following the proposal by M{o}lmer, Isenhower, and Saffman [J. Phys. B 44, 184016 ( 2011)]. We suggest some simplifications for the microwave and laser couplings, and analyze the performance of the algorithm for up to k = 4 multilevel atoms under realistic experimental conditions using quantum stochastic (Monte-Carlo) wavefunction simulations.
79 - F.M. Toyama , W. van Dijk 2017
In the Grover-type quantum search process a search operator is iteratively applied, say, k times, on the initial database state. We present an additive decomposition scheme such that the iteration process is expressed, in the computational space, as a linear combination of k operators, each of which consists of a single Grover-search followed by an overall phase-rotation. The value of k and the rotation phase are the same as those determined in the framework of the search with certainty. We further show that the final state can be expressed in terms of a single oracle operator of the Grover-search and phase-rotation factors. We discuss how the additive form can be utilized so that it effectively reduces the computational load of the iterative search, and we propose an effective shortcut gate that realizes the same outcome as the iterative search.
In this paper we discuss Grover Adaptive Search (GAS) for Constrained Polynomial Binary Optimization (CPBO) problems, and in particular, Quadratic Unconstrained Binary Optimization (QUBO) problems, as a special case. GAS can provide a quadratic speed -up for combinatorial optimization problems compared to brute force search. However, this requires the development of efficient oracles to represent problems and flag states that satisfy certain search criteria. In general, this can be achieved using quantum arithmetic, however, this is expensive in terms of Toffoli gates as well as required ancilla qubits, which can be prohibitive in the near-term. Within this work, we develop a way to construct efficient oracles to solve CPBO problems using GAS algorithms. We demonstrate this approach and the potential speed-up for the portfolio optimization problem, i.e. a QUBO, using simulation and experimental results obtained on real quantum hardware. However, our approach applies to higher-degree polynomial objective functions as well as constrained optimization problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا