ترغب بنشر مسار تعليمي؟ اضغط هنا

Instantaneous processing of slow light: amplitude-duration control, storage, and splitting

263   0   0.0 ( 0 )
 نشر من قبل Rustem Shakhmuratov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonadiabatic change of the control field or of the low-frequency coherence allows for an almost instantaneous change of the signal field propagating in a thick resonant absorber where electromagnetically induced transparency is realized. This finding is applied for the storage and retrieval of the signal, for the creation of a signal copy and separation of this copy from the original pulse without its destruction.



قيم البحث

اقرأ أيضاً

We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.
We consider a model of a unstable state defined by the truncated Breit-Wigner energy density distribution function. An analytical form of the survival amplitude $a(t)$ of the state considered is found. Our attention is focused on the late time proper ties of $a(t)$ and on effects generated by the non--exponential behavior of this amplitude in the late time region: In 1957 Khalfin proved that this amplitude tends to zero as $t$ goes to the infinity more slowly than any exponential function of $t$. This effect can be described using a time-dependent decay rate $gamma(t)$ and then the Khalfin result means that this $gamma(t)$ is not a constant but at late times it tends to zero as $t$ goes to the infinity. It appears that the energy $E(t)$ of the unstable state behaves similarly: It tends to the minimal energy $E_{min}$ of the system as $t to infty$. Within the model considered we find two first leading time dependent elements of late time asymptotic expansions of $E(t)$ and $gamma (t)$. We discuss also possible implications of such a late time asymptotic properties of $E(t)$ and $gamma (t)$ and cases where these properties may manifest themselves.
Broadband spin-photon interfaces for long-lived storage of photonic quantum states are key elements for quantum information technologies. Yet, reliable operation of such memories in the quantum regime is challenging due to photonic noise arising from technical and/or fundamental limitations in the storage-and-recall processes controlled by strong electromagnetic fields. Here, we experimentally implement a single-photon-level spin-wave memory in a laser-cooled Rubidium gas, based on the recently proposed Autler-Townes splitting (ATS) protocol. We demonstrate storage of 20-ns-long laser pulses, each containing an average of 0.1 photons, for 200 ns with an efficiency of $12.5%$ and signal-to-noise ratio above 30. Notably, the robustness of ATS spin-wave memory against motional dephasing allows for an all-spatial filtering of the control-field noise, yielding an ultra-low unconditional noise probability of $3.3times10^{-4}$, without the complexity of spectral filtering. These results highlight that broadband ATS memory in ultracold atoms is a preeminent option for storing quantum light.
103 - M. Klein , Y. Xiao , A.V. Gorshkov 2008
We present a preliminary experimental study of the dependence on optical depth of slow and stored light pulses in Rb vapor. In particular, we characterize the efficiency of slow and stored light as a function of Rb density; pulse duration, delay and storage time; and control field intensity. Experimental results are in good qualitative agreement with theoretical calculations based on a simplified three-level model at moderate densities.
We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon in teractions. Through the collective read-out of these pseudo-spin rotations it is shown that the microwave field modifies the long-range interactions between polaritons. This technique provides a powerful interface between the microwave and optical domains, with applications in quantum simulations of spin liquids, quantum metrology and quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا