ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal quantum electrodynamics of nonrelativistic charged fluids

53   0   0.0 ( 0 )
 نشر من قبل Pascal Buenzli
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for non relativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It has still the $r^{-6}$ decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.

قيم البحث

اقرأ أيضاً

54 - A. Vukics , G. Konya , P. Domokos 2018
We show that the Power-Zienau-Woolley picture of the electrodynamics of nonrelativistic neutral particles (atoms) can be derived from a gauge-invariant Lagrangian without making reference to any gauge whatsoever in the process. This equivalence is in dependent of choices of canonical field momentum or quantization strategies. In the process, we emphasize that in nonrelativistic (quantum) electrodynamics, the all-time appropriate generalized coordinate for the field is the transverse part of the vector potential, which is itself gauge invariant, and the use of which we recommend regardless of the choice of gauge, since in this way it is possible to sidestep most issues of constraints. Furthermore, we point out a freedom of choice for the conjugate momenta in the respective pictures, the conventional choices being good ones in the sense that they drastically reduce the set of system constraints.
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi stic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s. In the last twenty years, the emergence of quantum information science has intensified research toward using th ese circuits as qubits in quantum information processors. The realization that superconducting qubits can be made to strongly and controllably interact with microwave photons, the quantized electromagnetic fields stored in superconducting circuits, led to the creation of the field of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity QED inspired many of the early developments of circuit QED, the latter has now become an independent and thriving field of research in its own right. Circuit QED allows the study and control of light-matter interaction at the quantum level in unprecedented detail. It also plays an essential role in all current approaches to quantum information processing with superconducting circuits. In addition, circuit QED enables the study of hybrid quantum systems interacting with microwave photons. Here, we review the coherent coupling of superconducting qubits to microwave photons in high-quality oscillators focussing on the physics of the Jaynes-Cummings model, its dispersive limit, and the different regimes of light-matter interaction in this system. We discuss coupling of superconducting circuits to their environment, which is necessary for coherent control and measurements in circuit QED, but which also invariably leads to decoherence. Dispersive qubit readout, a central ingredient in almost all circuit QED experiments, is also described. Following an introduction to these fundamental concepts that are at the heart of circuit QED, we discuss important use cases of these ideas in quantum information processing and in quantum optics.
87 - Li-Ping Yang , Dazhi Xu 2021
The duality symmetry between electricity and magnetism hidden in classical Maxwell equations suggests the existence of dual charges, which have usually been interpreted as magnetic charges and have not been observed in experiments. In quantum electro dynamics (QED), both the electric and magnetic fields have been unified into one gauge field $A_{mu}$, which makes this symmetry inconspicuous. Here, we recheck the duality symmetry of QED by introducing a dual gauge field. Within the framework of gauge-field theory, we show that the electric-magnetic duality symmetry cannot give any new conservation law. By checking charge-charge interaction and specifically the quantum Lorentz force equation, we find that the dual charges are electric charges, not magnetic charges. More importantly, we show that true magnetic charges are not compatible with the gauge-field theory of QED, because the interaction between a magnetic charge and an electric charge can not be mediated by gauge photons.
Understanding physical properties of quantum emitters strongly interacting with quantized electromagnetic modes, both discrete and continuous spectra, is one of the primary goals in the emergent field of waveguide quantum electrodynamics (QED). When the light-matter coupling strength is comparable to or even exceeds energies of elementary excitations, conventional approaches based on perturbative treatment of light-matter interactions, two-level description of matter excitations, and photon-number truncation are no longer sufficient. Here we study in and out of equilibrium properties of waveguide QED in such nonperturbative regimes by developing a comprehensive and rigorous theoretical approach using an asymptotic decoupling unitary transformation. We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass and potential; the latter may explain recent experiments demonstrating cavity-induced changes in chemical reactivity as well as enhancements of ferromagnetism or superconductivity. We demonstrate these results by applying our general formalism to a model of coupled cavity arrays, which is relevant to experiments in superconducting qubits interacting with microwave resonators or atoms coupled to photonic crystals. We examine the relation between our results and delocalization-localization transition in the spin-boson model; notably, we point out that one can find a quantum phase transition akin to the superradiant transition in multi-emitter waveguide QED systems with superlinear photonic dispersion. Besides waveguide resonators, we discuss possible applications of our framework to other light-matter systems relevant to quantum optics, condensed matter physics, and quantum chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا