ﻻ يوجد ملخص باللغة العربية
The broadband parametric fluorescence pulse (probe light) with center frequency resonant on 87Rb D1 line was injected into a cold atomic ensemble with coherent light (control light). Due to the low gain in the parametric down conversion process, the probe light was in a highly bunched photon-pair state. By switching off the control light, the probe light within the electromagnetically induced transparency window was mapped on the atoms. When the control light was switched on, the probe light was retrieved and frequency filtered storage was confirmed from the superbunching effect and an increase of the coherence time of the retrieved light.
We show that an alkali atom with a tripod electronic structure can yield rich electromagnetically induced transparency phenomena even at room temperature. In particular we introduce double-double electromagnetically induced transparency wherein signa
We report the observation of Electromagnetically Induced Transparency (EIT) of a mechanical field, where a superconducting artificial atom is coupled to a 1D-transmission line for surface acoustic waves. An electromagnetic microwave drive is used as
We report experimental investigationd of optical pulse group velocity reduction and probe pulse regeneration using a Raman scheme. The new scheme which does not rely on the on-one-photon resonance electromagnetically induced transparency (EIT), has m
We theoretically investigate a double-{Lambda} electromagnetically induced transparency (EIT) system. The property of the double-{Lambda} medium with a closed-loop configuration depends on the relative phase of the applied laser fields. This phase-de
We experimentally and theoretically analyze the transmission of continuous-wave and pulsed squeezed vacuum through rubidium vapor under the conditions of electromagnetically induced transparency. Frequency- and time-domain homodyne tomography is used