ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-wavelength Coherent Imaging of a Pure-Phase Object with Thermal Light

300   0   0.0 ( 0 )
 نشر من قبل Minghui Zhang
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report, for the first time, the observation of sub-wavelength coherent image of a pure phase object with thermal light,which represents an accurate Fourier transform. We demonstrate that ghost-imaging scheme (GI) retrieves amplitude transmittance knowledge of objects rather than the transmitted intensities as the HBT-type imaging scheme does.

قيم البحث

اقرأ أيضاً

We propose a experimental scenario of edge enhancement ghost imaging of phase objects with nonlocal orbital angular momentum (OAM) phase filters. Spatially incoherent thermal light is separated into two daughter beams, the test and reference beams, i n which the detected objects and phase filters are symmetrically placed,respectively. The results of simulation experiment prove that the edge enhanced ghost images of phase objects can be achieved through the second-order light field intensity correlation measurement owing to the OAM correlation characteristics. Further simulation results demonstrate that the edge enhanced ghost imaging system dose not violate a Bell-type inequality for the OAM subspace, which reveals the classical nature of the thermal light correlation.
In thermal light ghost imaging, the correlation orders were usually positive integers in previous studies. In this paper, we examine the fractional-order moments, whose correlation order are fractional numbers, between the bucket and reference signal s in the ghost imaging system. The crucial step in theory is to determine the precise relation between the bucket signals and reference signals. We deduce the joint probability density function between the bucket and reference signals by regarding the reference signals as an array of independent stochastic variables. In calculating the fractional-order moments, the correlation order for the reference signals must be positive to avoid infinity. While the correlation order for the bucket signals can be positive or negative numbers. Negative (positive) ghost images are obtained with negative (positive) orders of the bucket signals. The visibility degree and signal-to-noise ratio of ghost images from the fractional-order moments are analysed. The experimental results and numerical simulations meet our analysis based on probability theory.
We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and ordered arrangements of 100 nm features with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our algorithmic technique relies on minimizing the number of degrees of freedom; it works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.
We analyze a tripod atom light coupling scheme characterized by two dark states playing the role of quasi-spin states. It is demonstrated that by properly configuring the coupling laser fields, one can create a lattice with spin-dependent sub-wavelen gth barriers. This allows to flexibly alter the atomic motion ranging from atomic dynamics in the effective brick-wall type lattice to free motion of atoms in one dark state and a tight binding lattice with a twice smaller periodicity for atoms in the other dark state. Between the two regimes, the spectrum undergoes significant changes controlled by the laser fields. The tripod lattice can be produced using current experimental techniques.
We theoretically study the phase sensitivity of an SU(1,1) interferometer with a thermal state and squeezed vacuum state as inputs and parity detection as measurement. We find that phase sensitivity can beat the shot-noise limit and approaches the He isenberg limit with increasing input photon number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا