ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbation theory for sextic doubly anharmonic oscillator

252   0   0.0 ( 0 )
 نشر من قبل Irina Dobrovolska
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple method for the calculation of higher orders of the logarithmic perturbation theory for bound states of the spherical anharmonic oscillator is developed. The structure of the perturbation series for energy eigenvalues of the sextic doubly anharmonic oscillator is investigated. The recursion technique for deriving renormalized perturbation expansions is offered.



قيم البحث

اقرأ أيضاً

In our previous paper I (del Valle--Turbiner, Int. J. Mod. Phys. A34, 1950143, 2019) it was developed the formalism to study the general $D$-dimensional radial anharmonic oscillator with potential $V(r)= frac{1}{g^2},hat{V}(gr)$. It was based on the Perturbation Theory (PT) in powers of $g$ (weak coupling regime) and in inverse, fractional powers of $g$ (strong coupling regime) in both $r$-space and in $(gr)$-space, respectively. As the result it was introduced - the Approximant - a locally-accurate uniform compact approximation of a wave function. If taken as a trial function in variational calculations it has led to variational energies of unprecedented accuracy for cubic anharmonic oscillator. In this paper the formalism is applied to both quartic and sextic, spherically-symmetric radial anharmonic oscillators with two term potentials $V(r)= r^2 + g^{2(m-1)}, r^{2m}, m=2,3$, respectively. It is shown that a two-parametric Approximant for quartic oscillator and a five-parametric one for sextic oscillator for the first four eigenstates used to calculate the variational energy are accurate in 8-12 figures for any $D=1,2,3ldots $ and $g geq 0$, while the relative deviation of the Approximant from the exact eigenfunction is less than $10^{-6}$ for any $r geq 0$.
The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for the spherical anharmonic oscillator is developed. Based upon the $hbar$-expansions and suitable quantization conditions a new procedure for de riving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the quartic anharmonic oscillator are considered.
A new recursion procedure for deriving renormalized perturbation expansions for the one-dimensional anharmonic oscillator is offered. Based upon the $hbar$-expansions and suitable quantization conditions, the recursion formulae obtained have the same simple form both for ground and excited states and can be easily applied to any renormalization scheme. As an example, the renormalized expansions for the sextic anharmonic oscillator are considered.
It is shown that for the one-dimensional quantum anharmonic oscillator with potential $V(x)= x^2+g^2 x^4$ the Perturbation Theory (PT) in powers of $g^2$ (weak coupling regime) and the semiclassical expansion in powers of $hbar$ for energies coincide . It is related to the fact that the dynamics in $x$-space and in $(gx)$-space corresponds to the same energy spectrum with effective coupling constant $hbar g^2$. Two equations, which govern the dynamics in those two spaces, the Riccati-Bloch (RB) and the Generalized Bloch (GB) equations, respectively, are derived. The PT in $g^2$ for the logarithmic derivative of wave function leads to PT (with polynomial in $x$ coefficients) for the RB equation and to the true semiclassical expansion in powers of $hbar$ for the GB equation, which corresponds to a loop expansion for the density matrix in the path integral formalism. A 2-parametric interpolation of these two expansions leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy $sim 10^{-6}$ locally and unprecedented accuracy $sim 10^{-9}-10^{-10}$ in energy for any $g^2 geq 0$. A generalization to the radial quartic oscillator is briefly discussed.
102 - R. B. Paris 2015
We examine a class of exact solutions for the eigenvalues and eigenfunctions of a doubly anharmonic oscillator defined by the potential $V(x)=omega^2/2 x^2+lambda x^4/4+eta x^6/6$, $eta>0$. These solutions hold provided certain constraints on the cou pling parameters $omega^2$, $lambda$ and $eta$ are satisfied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا