ﻻ يوجد ملخص باللغة العربية
We analyze the error in trapped-ion, hyperfine qubit, quantum gates due to spontaneous scattering of photons from the gate laser beams. We investigate single-qubit rotations that are based on stimulated Raman transitions and two-qubit entangling phase-gates that are based on spin-dependent optical dipole forces. This error is compared between different ion species currently being investigated as possible quantum information carriers. For both gate types we show that with realistic laser powers the scattering error can be reduced to below current estimates of the fault-tolerance error threshold.
We propose an architecture and methodology for large-scale quantum simulations using hyperfine states of trapped-ions in an arbitrary-layout microtrap array with laserless interactions. An ion is trapped at each site, and the electrode structure prov
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surfac
We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of paral
Various quantum applications can be reduced to estimating expectation values, which are inevitably deviated by operational and environmental errors. Although errors can be tackled by quantum error correction, the overheads are far from being affordab