ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum logic via the exchange blockade in ultracold collisions

169   0   0.0 ( 0 )
 نشر من قبل David Hayes
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A nuclear spin can act as a quantum switch that turns on or off ultracold collisions between atoms even when there is neither interaction between nuclear spins nor between the nuclear and electron spins. This exchange blockade is a new mechanism for implementing quantum logic gates that arises from the symmetry of composite identical particles, rather than direct coupling between qubits. We study the implementation of the entangling $sqrt{text{SWAP}}$ gate based on this mechanism for a model system of two atoms with ground electron configuration $^1S_0$, spin 1/2 nuclei, trapped in optical tweezers. We evaluate a proof-of-principle protocol based on adiabatic evolution of a one dimensional double Gaussian well, calculating fidelities of operation as a function of interaction strength, gate time, and temperature.



قيم البحث

اقرأ أيضاً

We investigate controlled collisions between trapped but separated ultracold atoms. The interaction between atoms is treated self-consistently using an energy-dependent delta-function pseudopotential model, whose validity we establish. At a critical separation, a trap-induced shape resonance between a molecular bound states and a vibrational eigenstate of the trap can occur. This resonance leads to an avoided crossing in the eigenspectrum as a function of separation. We investigate how this new resonance can be employed for quantum control.
We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively. In particular, we find that the photon blockade via destructive quantum interference also exists in the conventional photon blockade regime, and that the unconventional photon blockade occurs in both the weak- and strong-Kerr nonlinearity cases. The photon blockade effect can be observed by calculating the second-order correlation function of the cavity field. This model is general and hence it can be implemented in various experimental setups such as coupled optical-cavity systems, coupled photon-magnon systems, and coupled superconducting-resonator systems. We present some discussions on the experimental feasibility.
309 - L. Isenhower , M. Saffman , 2011
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a $k$-atom controlled NOT (C$_k$NOT) neutral atom gate. Thi s gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only $2k+3$ or 5 Rydberg $pi$ pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for $k=35$.
We have studied the effects of loading $^{87}$Rb into a far off resonant trap (FORT) in the presence of an ultracold cloud of $^{85}$Rb. The presence of the $^{85}$Rb resulted in a marked decrease of the $^{87}$Rb load rate. This decrease is consiste nt with a decrease in the laser cooling efficiency needed for effective loading. While many dynamics which disrupt loading efficency arise when cooling in a dense cloud of atoms (reabsorption, adverse optical pumping, etc.), the large detuning between the transitions of $^{85}$Rb and $^{87}$Rb should isolate the isotopes from these effects. For our optical molasses conditions we calculate that our cooling efficiencies require induced ground-state coherences. We present data and estimates which are consistent with heteronuclear long-ranged induced dipole-dipole collisions disrupting these ground state coherences, leading to a loss of optical trap loading efficiency.
We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing at oms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا