ﻻ يوجد ملخص باللغة العربية
In all local realistic theories worked out till now, locality is considered as a basic assumption. Most people in the field consider the inconsistency between local realistic theories and quantum mechanics to be a result of non-local nature of quantum mechanics. In this Paper, we derive the Greenberger-Horne-Zeilinger type theorem for particles with instantaneous (non-local) interactions at the hidden-variable level. Then, we show that the previous contradiction still exists between quantum mechanics and non-local hidden variable models.
The hierarchy of nonlocality and entanglement in multipartite systems is one of the fundamental problems in quantum physics. Existing studies on this topic to date were limited to the entanglement classification according to the numbers of particles
The Greenberger-Horne-Zeilinger (GHZ) argument against noncontextual local hidden variables is recast in quantum logical terms of fundamental propositions and probabilities. Unlike Kochen-Specker- and Hardy-like configurations, this operator based ar
The $N$-qubit Greenberger-Horne-Zeilinger (GHZ) states are the maximally entangled states of $N$ qubits, which have had many important applications in quantum information processing, such as quantum key distribution and quantum secret sharing. Thus h
We propose a probabilistic quantum cloning scheme using Greenberger-Horne-Zeilinger states, Bell basis measurements, single-qubit unitary operations and generalized measurements, all of which are within the reach of current technology. Compared to an
Entanglement is a key resource for quantum information processing. A widely used tool for detecting entanglement is entanglement witness, where the measurement of the witness operator is guaranteed to be positive for all separable states and can be n