ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum scaling laws in the onset of dynamical delocalization

353   0   0.0 ( 0 )
 نشر من قبل Jean-Claude Garreau
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the destruction of dynamical localization, experimentally observed in an atomic realization of the kicked rotor, by a deterministic Hamiltonian perturbation, with a temporal periodicity incommensurate with the principal driving. We show that the destruction is gradual, with well defined scaling laws for the various classical and quantum parameters, in sharp contrast with predictions based on the analogy with Anderson localization.

قيم البحث

اقرأ أيضاً

We perform a finite-time scaling analysis over the detrapping point of a three-state quantum walk on the line. The coin operator is parameterized by $rho$ that controls the wavepacket spreading velocity. The input state prepared at the origin is set as symmetric linear combination of two eigenstates of the coin operator with a characteristic mixing angle $theta$, one of them being the component that results in full spreading occurring at $theta_c(rho)$ for which no fraction of the wavepacket remains trapped near the initial position. We show that relevant quantities such as the survival probability and the participation ratio assume single parameter scaling forms at the vicinity of the detrapping angle $theta_c$. In particular, we show that the participation ratio grows linearly in time with a logarithmic correction, thus shedding light on previous reports of sublinear behavior.
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling la ws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
We investigate precursors of critical behavior in the quasienergy spectrum due to the dynamical instability in the kicked top. Using a semiclassical approach, we analytically obtain a logarithmic divergence in the density of states, which is analogou s to a continuous excited state quantum phase transition in undriven systems. We propose a protocol to observe the cusp behavior of the magnetization close to the critical quasienergy.
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with $hbar^2_{rm eff}/D$, where $hbar_{rm eff}$ is the effective Planck constant and $D$ is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum to classical transition when it is measured comparing the corresponding phase space distributions. We discuss here the meaning of both scalings in the precise definition of a frontier between the classical and quantum behavior. We also show that there are quantum coherences that the Renyi entropy is unable to detect which questions its use in the studies of decoherence.
99 - Chushun Tian , Kun Yang 2021
The {it exchange} interaction arising from the particle indistinguishability is of central importance to physics of many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement induced by this interaction in an isolated system, namely, an ideal Fermi gas confined in a chaotic cavity, which evolves unitarily from a non-Gaussian pure state. We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure. Furthermore, for a class of initial states, such change leads to the approach to thermal equilibrium everywhere in the cavity, with the well-known Ehrenfest time in quantum chaos as the thermalization time. Specifically, the quantum expectation values of various correlation functions at different spatial scales are all determined by the Fermi-Dirac distribution. In addition, by using the reduced density matrix (RDM) and the entanglement entropy (EE) as local probes, we find that the gas inside a subsystem is at equilibrium with that outside, and its thermal entropy is the EE, even though the whole system is in a pure state. As a by-product of this work, we provide an analytical solution supporting an important conjecture on thermalization, made and numerically studied by Garrison and Grover in: Phys. Rev. X textbf{8}, 021026 (2018), and strengthen its statement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا