ﻻ يوجد ملخص باللغة العربية
We study the destruction of dynamical localization, experimentally observed in an atomic realization of the kicked rotor, by a deterministic Hamiltonian perturbation, with a temporal periodicity incommensurate with the principal driving. We show that the destruction is gradual, with well defined scaling laws for the various classical and quantum parameters, in sharp contrast with predictions based on the analogy with Anderson localization.
We perform a finite-time scaling analysis over the detrapping point of a three-state quantum walk on the line. The coin operator is parameterized by $rho$ that controls the wavepacket spreading velocity. The input state prepared at the origin is set
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling la
We investigate precursors of critical behavior in the quasienergy spectrum due to the dynamical instability in the kicked top. Using a semiclassical approach, we analytically obtain a logarithmic divergence in the density of states, which is analogou
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the
The {it exchange} interaction arising from the particle indistinguishability is of central importance to physics of many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement induced by this interaction