ترغب بنشر مسار تعليمي؟ اضغط هنا

How to hide a secret direction

102   0   0.0 ( 0 )
 نشر من قبل John Calsamiglia
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a procedure to share a secret spatial direction in the absence of a common reference frame using a multipartite quantum state. The procedure guarantees that the parties can determine the direction if they perform joint measurements on the state, but fail to do so if they restrict themselves to local operations and classical communication (LOCC). We calculate the fidelity for joint measurements, give bounds on the fidelity achievable by LOCC, and prove that there is a non-vanishing gap between the two of them, even in the limit of infinitely many copies. The robustness of the procedure under particle loss is also studied. As a by-product we find bounds on the probability of discriminating by LOCC between the invariant subspaces of total angular momentum N/2 and N/2-1 in a system of N elementary spins.

قيم البحث

اقرأ أيضاً

101 - Palash Dey , Sourav Medya 2019
Covert networks are social networks that often consist of harmful users. Social Network Analysis (SNA) has played an important role in reducing criminal activities (e.g., counter terrorism) via detecting the influential users in such networks. There are various popular measures to quantify how influential or central any vertex is in a network. As expected, strategic and influential miscreants in covert networks would try to hide herself and her partners (called {em leaders}) from being detected via these measures by introducing new edges. Waniek et al. show that the corresponding computational problem, called Hiding Leader, is NP-Complete for the degree and closeness centrality measures. We study the popular core centrality measure and show that the problem is NP-Complete even when the core centrality of every leader is only $3$. On the contrary, we prove that the problem becomes polynomial time solvable for the degree centrality measure if the degree of every leader is bounded above by any constant. We then focus on the optimization version of the problem and show that the Hiding Leader problem admits a $2$ factor approximation algorithm for the degree centrality measure. We complement it by proving that one cannot hope to have any $(2-varepsilon)$ factor approximation algorithm for any constant $varepsilon>0$ unless there is a $varepsilon/2$ factor polynomial time algorithm for the Densest $k$-Subgraph problem which would be considered a significant breakthrough.
Despite significant strides made towards understanding accretion, outflow, and emission processes in the Galactic Center supermassive black hole Sagittarius A*, the presence of jets has neither been rejected nor proven. We investigate here whether th e combined spectral and morphological properties of the source at radio through near infrared wavelengths are consistent with the predictions for inhomogeneous jets. In particular, we construct images of jets at a wavelength of 7mm based on models that are consistent with the spectrum of Sgr A*. We then compare these models through closure quantities with data obtained from the Very Long Baseline Array at 7mm. We find that the best-fit jet models give comparable or better fits than best-fit Gaussian models for the intrinsic source found in previous analyses. The best fitting jet models are bipolar, are highly inclined to the line of sight ($theta ge$ 75 degrees), may favor a position angle on the sky of 105 degrees, and have compact bases with sizes of a few gravitational radii.
100 - Gilad Gour , Andreas Winter 2019
We show that the generalization of the relative entropy of a resource from states to channels is not unique, and there are at least six such generalizations. We then show that two of these generalizations are asymptotically continuous, satisfy a vers ion of the asymptotic equipartition property, and their regularizations appear in the power exponent of channe
269 - H. F. Chau 2002
A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdr opping or imperfect apparatus is low. Here, I report a practical quantum key distribution scheme making use of an adaptive privacy amplification procedure with two-way classical communication. Then, I prove that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than $0.5-0.1sqrt{5} approx 27.6%$, thereby making it the most error resistant scheme known to date.
This is a story about making quantum computers speak, and doing so in a quantum-native, compositional and meaning-aware manner. Recently we did question-answering with an actual quantum computer. We explain what we did, stress that this was all done in terms of pictures, and provide many pointers to the related literature. In fact, besides natural language, many other things can be implemented in a quantum-native, compositional and meaning-aware manner, and we provide the reader with some indications of that broader pictorial landscape, including our account on the notion of compositionality. We also provide some guidance for the actual execution, so that the reader can give it a go as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا