ﻻ يوجد ملخص باللغة العربية
We recently demonstrated that strings of trapped atoms inside a standing wave optical dipole trap can be rearranged using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. This technique allows us to actively set the interatomic separations on the scale of the individual trapping potential wells. Here, we use such a distance-control operation to insert two atoms into the same potential well. The detected success rate of this manipulation is 16(+4/-3) %, in agreement with the predictions of a theoretical model based on our independently determined experimental parameters.
We report on the controlled insertion of individual Cs atoms into an ultracold Rb gas at about 400 nK. This requires to combine the techniques necessary for cooling, trapping and manipulating single laser cooled atoms around the Doppler temperature w
In this paper, we introduce a new problem of manipulating a given video by inserting other videos into it. Our main task is, given an object video and a scene video, to insert the object video at a user-specified location in the scene video so that t
We consider two separate atoms interacting with a single-mode optical resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between textit{one} photon and textit{t
Using optical dipole forces we have realized controlled transport of a single or any desired small number of neutral atoms over a distance of a centimeter with sub-micrometer precision. A standing wave dipole trap is loaded with a prescribed number o
We present an effective and fast (few microseconds) procedure for transferring ultra-cold atoms from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time dur