ﻻ يوجد ملخص باللغة العربية
Linear media are predicted to exist whose relative permiability is an operator in the space of quantum states of light. Such media are characterized by a photon statistics--dependent refractive index. This indicates a new type of optical dispersion -- the photon statistics dispersion. Interaction of quantum light with such media modifies the photon number distribution and, in particular, the degree of coherence of light. An excitonic composite -- a collection of noninteracting quantum dots -- is considered as a realization of the medium with the photon statistics dispersion. Expressions are derived for generalized plane waves in an excitonic composite and input--output relations for a planar layer of the material. Transformation rules for different photon initial states are analyzed. Utilization of the photon statistics dispersion in potential quantum--optical devices is discussed.
The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization. Here we explore the effect of phase dispe
We consider a system consisting of a large individual quantum dot with excitonic resonance coupled to a single mode photonic cavity in the nonlinear regime when exciton- exciton interaction becomes important. We show that in the presence of time-modu
Photon correlations, as measured by Glaubers $n$-th order coherence functions $g^{(n)}$, are highly sought to be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to strong correlations according to
Superbunching pseudothermal light has important applications in studying the second- and higher-order interference of light in quantum optics. Unlike the photon statistics of thermal or pseudothermal light is well understood, the photon statistics of
We envision that dispersion between two polymeric materials on mesoscales would create new composites with properties that are much more superior to the components alone. Here we elucidate the dispersion between two of most abundant natural polysacch