ﻻ يوجد ملخص باللغة العربية
We investigate the behavior of N atoms resonantly coupled to a single electromagnetic field mode sustained by a high quality cavity, containing a mesoscopic coherent field. We show with a simple effective hamiltonian model that the strong coupling between the cavity and the atoms produces an atom-field entangled state, involving N+1 nearly-coherent components slowly rotating at different paces in the phase plane. The periodic overlap of these components results in a complex collapse and revival pattern for the Rabi oscillation. We study the influence of decoherence due to the finite cavity quality factor. We propose a simple analytical model, based on the Monte Carlo approach to relaxation. We compare its predictions with exact calculations and show that these interesting effects could realistically be observed on a two or three atoms sample in a 15 photons field with circular Rydberg atoms and superconducting cavities.
We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D ion array using entanglement-induced decoherence as a method of transduction. Our system is a $sim$400 $mu$m-diameter planar crystal of several hundred $^9$Be
We present a fully analytical solution of the dynamics of two strongly-driven atoms resonantly coupled to a dissipative cavity field mode. We show that an initial atom-atom entanglement cannot be increased. In fact, the atomic Hilbert space divides i
We in this paper study quantum correlations for two neutral spin-particles coupled with a single-mode optical cavity through the usual magnetic interaction. Two-spin entangled states for both antiparallel and parallel spin-polarizations are generated
We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assu
We study the decoherence process of a four spin-1/2 antiferromagnet that is coupled to an environment of spin-1/2 particles. The preferred basis of the antiferromagnet is discussed in two limiting cases and we identify two $it{exact}$ pointer states.