ترغب بنشر مسار تعليمي؟ اضغط هنا

Sure success partial search

41   0   0.0 ( 0 )
 نشر من قبل Byung-Soo Choi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Partial search has been proposed recently for finding the target block containing a target element with fewer queries than the full Grover search algorithm which can locate the target precisely. Since such partial searches will likely be used as subroutines for larger algorithms their success rate is important. We propose a partial search algorithm which achieves success with unit probability.

قيم البحث

اقرأ أيضاً

We consider a database separated into blocks. Blocks containing target items are called target blocks. Blocks without target items are called non-target blocks. We consider a case, when each target block has the same number of target items. We presen t a fast quantum algorithm, which finds one of the target blocks. Our algorithm is based on Grover-Radhakrishnan algorithm of partial search. We minimize the number of queries to the oracle.
A few years ago, the first CNN surpassed human performance on ImageNet. However, it soon became clear that machines lack robustness on more challenging test cases, a major obstacle towards deploying machines in the wild and towards obtaining better c omputational models of human visual perception. Here we ask: Are we making progress in closing the gap between human and machine vision? To answer this question, we tested human observers on a broad range of out-of-distribution (OOD) datasets, adding the missing human baseline by recording 85,120 psychophysical trials across 90 participants. We then investigated a range of promising machine learning developments that crucially deviate from standard supervised CNNs along three axes: objective function (self-supervised, adversarially trained, CLIP language-image training), architecture (e.g. vision transformers), and dataset size (ranging from 1M to 1B). Our findings are threefold. (1.) The longstanding robustness gap between humans and CNNs is closing, with the best models now matching or exceeding human performance on most OOD datasets. (2.) There is still a substantial image-level consistency gap, meaning that humans make different errors than models. In contrast, most models systematically agree in their categorisation errors, even substantially different ones like contrastive self-supervised vs. standard supervised models. (3.) In many cases, human-to-model consistency improves when training dataset size is increased by one to three orders of magnitude. Our results give reason for cautious optimism: While there is still much room for improvement, the behavioural difference between human and machine vision is narrowing. In order to measure future progress, 17 OOD datasets with image-level human behavioural data are provided as a benchmark here: https://github.com/bethgelab/model-vs-human/
Numerical optimization is used to design linear-optical devices that implement a desired quantum gate with perfect fidelity, while maximizing the success rate. For the 2-qubit CS (or CNOT) gate, we provide numerical evidence that the maximum success rate is $S=2/27$ using two unentangled ancilla resources; interestingly, additional ancilla resources do not increase the success rate. For the 3-qubit Toffoli gate, we show that perfect fidelity is obtained with only three unentangled ancilla photons -- less than in any existing scheme -- with a maximum $S=0.00340$. This compares well with $S=(2/27)^2/2 approx 0.00274$, obtainable by combining two CNOT gates and a passive quantum filter [PRA 68, 064303 (2003)]. The general optimization approach can easily be applied to other areas of interest, such as quantum error correction, cryptography, and metrology [arXiv:0807.4906, PRL 99 070801 (2007)].
Optimizing a connection through a quantum repeater network requires careful attention to the photon propagation direction of the individual links, the arrangement of those links into a path, the error management mechanism chosen, and the applications pattern of consuming the Bell pairs generated. We analyze combinations of these parameters, concentrating on one-way error correction schemes (1-EPP) and high success probability links (those averaging enough entanglement successes per round trip time interval to satisfy the error correction system). We divide the buffering time (defined as minimizing the time during which qubits are stored without being usable) into the link-level and path-level waits. With three basic link timing patterns, a path timing pattern with zero unnecessary path buffering exists for all $3^h$ combinations of $h$ hops, for Bell inequality violation experiments (B class) and Clifford group (C class) computations, but not for full teleportation (T class) computations. On most paths, T class computations have a range of Pareto optimal timing patterns with a non-zero amount of path buffering. They can have optimal zero path buffering only on a chain of links where the photonic quantum states propagate counter to the direction of teleportation. Such a path reduces the time that a quantum state must be stored by a factor of two compared to Pareto optimal timing on some other possible paths.
Recently, Keating, Linden, and Wells cite{KLW} showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble ave rage of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of cite{KLW} to show that in fact, the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself, with no ensemble averaging. We also extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by ErdH{o}s and Schroder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا