ترغب بنشر مسار تعليمي؟ اضغط هنا

A characterization of global entanglement

56   0   0.0 ( 0 )
 نشر من قبل Peter Love
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a set of $2^{n-1}-1$ entanglement monotones for $n$ qubits and give a single measure of entanglement in terms of these. This measure is zero except on globally entangled (fully inseparable) states. This measure is compared to the Meyer-Wallach measure for two, three, and four qubits. We determine the four-qubit state, symmetric under exchange of qubit labels, which maximizes this measure. It is also shown how the elementary monotones may be computed as a function of observable quantities. We compute the magnitude of our measure for the ground state of the four-qubit superconducting experimental system investigated in [M. Grajcar et al., Phys. Rev. Lett._96_, 047006 (2006)], and thus confirm the presence of global entanglement in the ground state.


قيم البحث

اقرأ أيضاً

We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gaug ed using measures of the degree of inseparability and the degree of EPR paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
We characterize entanglement subject to its definition over real and complex, composite quantum systems. In particular, a method is established to assess quantum correlations with respect to a selected number system, illuminating the deeply rooted, y et rarely discussed question of why quantum states are described via complex numbers. With our experiment, we then realize two-photon polarization states that are entangled with respect to the notion of two rebits, comprising two two-level systems over real numbers. At the same time, the generated states are separable with respect to two complex qubits. Among other results, we reconstruct the best approximation of the generated states in terms of a real-valued, local expansion and show that this yields an incomplete description of our data. Conversely, the generated states are shown to be fully decomposable in terms of tensor-product states with complex wave functions. Thereby, we probe paradigms of quantum physics with modern theoretical tools and experimental platforms that are relevant for applications in quantum information science and technology and connected to the fundamentals of the quantum description of nature.
We present an analysis of the properties and characteristics of weakly optimal entanglement witnesses, that is witnesses whose expectation value vanishes on at least one product vector. Any weakly optimal entanglement witness can be written as the fo rm of $W^{wopt}=sigma-c_{sigma}^{max} I$, where $c_{sigma}^{max}$ is a non-negative number and $I$ is the identity matrix. We show the relation between the weakly optimal witness $W^{wopt}$ and the eigenvalues of the separable states $sigma$. Further we give an application of weakly optimal witnesses for constructing entanglement witnesses in a larger Hilbert space by extending the result of [P. Badzic{a}g {it et al}, Phys. Rev. A {bf 88}, 010301(R) (2013)], and we examine their geometric properties.
182 - Yu-Ran Zhang , Yu Zeng , Heng Fan 2017
We demonstrate that multipartite entanglement is able to characterize one-dimensional symmetry-protected topological order, which is witnessed by the scaling behavior of the quantum Fisher information of the ground state with respect to the spin oper ators defined in the dual lattice. We investigate an extended Kitaev chain with a $mathbf{Z}$ symmetry identified equivalently by winding numbers and paired Majorana zero modes at each end. The topological phases with high winding numbers are detected by the scaling coefficient of the quantum Fisher information density with respect to generators in different dual lattices. Containing richer properties and more complex structures than bipartite entanglement, the dual multipartite entanglement of the topological state has promising applications in robust quantum computation and quantum metrology, and can be generalized to identify topological order in the Kitaev honeycomb model.
Scalable technologies to characterize the performance of quantum devices are crucial to creating large quantum networks and quantum processing units. Chief among the resources of quantum information processing is entanglement. Here we describe the fu ll temporal and spatial characterization of polarization-entangled photons produced by Spontaneous Parametric Down
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا