ﻻ يوجد ملخص باللغة العربية
It has been known for some time that graph isomorphism reduces to the hidden subgroup problem (HSP). What is more, most exponential speedups in quantum computation are obtained by solving instances of the HSP. A common feature of the resulting algorithms is the use of quantum coset states, which encode the hidden subgroup. An open question has been how hard it is to use these states to solve graph isomorphism. It was recently shown by Moore, Russell, and Schulman that only an exponentially small amount of information is available from one, or a pair of coset states. A potential source of power to exploit are entangled quantum measurements that act jointly on many states at once. We show that entangled quantum measurements on at least Omega(n log n) coset states are necessary to get useful information for the case of graph isomorphism, matching an information theoretic upper bound. This may be viewed as a negative result because highly entangled measurements seem hard to implement in general. Our main theorem is very general and also rules out using joint measurements on few coset states for some other groups, such as GL(n, F_{p^m}) and G^n where G is finite and satisfies a suitable property.
In the Graph Isomorphism problem two N-vertex graphs G and G are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G into G. If yes, then G and G are said to be isomorph
We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Grobner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if th
Three new graph invariants are introduced which may be measured from a quantum graph state and form examples of a framework under which other graph invariants can be constructed. Each invariant is based on distinguishing a different number of qubits.
Computational advantages gained by quantum algorithms rely largely on the coherence of quantum devices and are generally compromised by decoherence. As an exception, we present a quantum algorithm for graph isomorphism testing whose performance is op
Graph states are a unique resource for quantum information processing, such as measurement-based quantum computation. Here, we theoretically investigate using continuous-variable graph states for single-parameter quantum metrology, including both pha