ترغب بنشر مسار تعليمي؟ اضغط هنا

Monomiality principle, Sheffer-type polynomials and the normal ordering problem

77   0   0.0 ( 0 )
 نشر من قبل Pawel Blasiak
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K A Penson




اسأل ChatGPT حول البحث

We solve the boson normal ordering problem for $(q(a^dag)a+v(a^dag))^n$ with arbitrary functions $q(x)$ and $v(x)$ and integer $n$, where $a$ and $a^dag$ are boson annihilation and creation operators, satisfying $[a,a^dag]=1$. This consequently provides the solution for the exponential $e^{lambda(q(a^dag)a+v(a^dag))}$ generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures.



قيم البحث

اقرأ أيضاً

84 - P Blasiak 2005
We solve the boson normal ordering problem for (q(a*)a + v(a*))^n with arbitrary functions q and v and integer n, where a and a* are boson annihilation and creation operators, satisfying [a,a*]=1. This leads to exponential operators generalizing the shift operator and we show that their action can be expressed in terms of substitutions. Our solution is naturally related through the coherent state representation to the exponential generating functions of Sheffer-type polynomials. This in turn opens a vast arena of combinatorial methodology which is applied to boson normal ordering and illustrated by a few examples.
107 - H. Cheballah 2008
In this paper, we show that the infinite generalised Stirling matrices associated with boson strings with one annihilation operator are projective limits of approximate substitutions, the latter being characterised by a finite set of algebraic equations.
151 - P. Blasiak 2007
We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers e numerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wicks theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.
85 - P. Blasiak 2004
We solve the normal ordering problem for (A* A)^n where A* (resp. A) are one mode deformed bosonic creation (resp. annihilation) operators satisfying [A,A*]=[N+1]-[N]. The solution generalizes results known for canonical and q-bosons. It involves com binatorial polynomials in the number operator N for which the generating functions and explicit expressions are found. Simple deformations provide examples of the method.
59 - P. Blasiak 2005
We present a combinatorial method of constructing solutions to the normal ordering of boson operators. Generalizations of standard combinatorial notions - the Stirling and Bell numbers, Bell polynomials and Dobinski relations - lead to calculational tools which allow to find explicitly normally ordered forms for a large class of operator functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا