ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Study of the Role of Atomic Interactions on Quantum Transport

40   0   0.0 ( 0 )
 نشر من قبل Kevin Henderson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental study of quantum transport for atoms confined in a periodic potential and compare between thermal and BEC initial conditions. We observe ballistic transport for all values of well depth and initial conditions, and the measured expansion velocity for thermal atoms is in excellent agreement with a single-particle model. For weak wells, the expansion of the BEC is also in excellent agreement with single-particle theory, using an effective temperature. We observe a crossover to a new regime for the BEC case as the well depth is increased, indicating the importance of interactions on quantum transport.



قيم البحث

اقرأ أيضاً

In analog to counterparts widely used in electronic circuits, all optical non-reciprocal devices are basic building blocks for both classical and quantum optical information processing. Approaching the fundamental limit of such devices, where the pro pagation of a single photon exhibits a good non-reciprocal characteristic, requires an asymmetric strong coupling between a single photon and a matter. Unfortunately it has been not realized yet. Here, we propose and experimentally realize a quantum non-reciprocity device with low optical losses and a high isolation of larger than 14 dB based on the cold atoms. Besides, the non-reciprocal transmission of a quantum qubit and non-reciprocal quantum storage of a true single photon are also realized. All results achieved would be very promising in building up quantum non-reciprocal devices for quantum networks.
We report experimental results on the action of selected local environments on the fidelity of the quantum teleportation protocol, taking into account non-ideal, realistic entangled resources. Different working conditions are theoretically identified , where a noisy protocol can be made almost insensitive to further addition of noise. We put to test these conditions on a photonic implementation of the quantum teleportation algorithm, where two polarization entangled qubits act as the entangled resource and a path qubit on Alice encodes the state to be teleported. Bobs path qubit is used to implement a local environment, while the environment on Alices qubit is simulated as a weighed average of different pure states. We obtain a good agreement with the theoretical predictions, we experimentally recreate the conditions to obtain a noise-induced enhancement of the protocol fidelity, and we identify parameter regions of increased insensibility to interactions with specific noisy environments.
The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency . We develop two complementary approaches, based on a Greens function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.
The manipulation of matterwave represents a milestone in the history of quantum mechanics. It was at the basis of its experimental validation through the observation of diffraction of matter on crystals, as well as grating and Youngs double-slit inte rference with electrons, neutron, atoms and molecules. More recently matterwave manipulation has become a building block in the implementation of quantum devices such as quantum sensors and it plays an essential role in many proposals for implementing quantum computers. In this letter we coherently control the spatial extent of the wavefunction by reversibly stretching and shrinking the wavefunction over a millimeter distance. The remarkable experimental simplicity of the scheme would ease applications in the field of quantum transport and quantum computing.
Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Th ose that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable tradeoffs inherent to quantum tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا