ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak nonlinearities: A new route to optical quantum computation

58   0   0.0 ( 0 )
 نشر من قبل William Munro
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak non-linearities and intense laser fields--the use of such fields provides for robust distribution of quantum information. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.

قيم البحث

اقرأ أيضاً

139 - Sylvain Bertaina 2014
We provide the first evidence for coherence and Rabi oscillations of spin-solitons pinned by the local breaking of translational symmetry in isotropic Heisenberg chains (simple antiferromagnetic-N{e}el or spin-Peierls).We show that these correlated s pin systems made of hundreds of coupled spin bear an overall spin S=1/2 and can be manipulated as a single spin. This is clearly contrary to all known spin-qubits which are paramagnetic centres, highly diluted to prevent decoherence. These results offer an alternative approach for spin-qubits paving the way for the implementation of a new type of quantum computer.
Classical reversible circuits, acting on $w$~bits, are represented by permutation matrices of size $2^w times 2^w$. Those matrices form the group P($2^w$), isomorphic to the symmetric group {bf S}$_{2^w}$. The permutation group P($n$), isomorphic to {bf S}$_n$, contains cycles with length~$p$, ranging from~1 to $L(n)$, where $L(n)$ is the so-called Landau function. By Lagrange interpolation between the $p$~matrices of the cycle, we step from a finite cyclic group of order~$p$ to a 1-dimensional Lie group, subgroup of the unitary group U($n$). As U($2^w$) is the group of all possible quantum circuits, acting on $w$~qubits, such interpolation is a natural way to step from classical computation to quantum computation.
We present a new mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to deterministically generate single photon Fock states, and more general photon-blockaded states. Our method is effective even for nonlineari ties that are orders-of-magnitude smaller than photonic loss. It is also completely distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian, exhibit a sharp cut-off in their photon number distribution, and can be arbitrary close to a single-photon Fock state. Our ideas require only standard linear and parametric drives, and is hence compatible with a variety of different photonic platforms.
64 - Jian Fu , Xutai Ma , Wenjiang Li 2015
We demonstrate that a tensor product structure and optical analogy of quantum entanglement can be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using the classical analogy, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we propose a sequence permutation mechanism to simulate certain quantum states and a generalized gate array model to simulate quantum algorithm, such as Shors algorithm and Grovers algorithm. The research on classical simulation of quantum states is important, for it not only enables potential beyond quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
We study the full field and frequency filtered output photon statistics of a resonator in thermal equilibrium with a bath and containing an arbitrarily large quartic nonlinearity. According to the general theory of photodetection, we derive general i nput-output relations valid for the ultra-anharmonic regime, where the nonlinearity becomes comparable to the energy of the resonator, and show how the emission properties are modified as compared to the generally assumed simple anharmonic regime. We analyse the impact of the nonlinearity on the full statistics of the emission and its spectral properties. In particular we derive a semi-analytical expression for the frequency resolved two-photon correlations or two-photon spectrum of the system in terms of the master equation coefficients and density matrix. This provides a very clear insight into the level structure and emission possibilities of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا